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Abstract

Many computer vision techniques infer properties of our physical world
from images. While images are formed through the physics of light and
mechanics, computer vision techniques are typically data-driven. This
trend is mostly driven by performance: classical techniques from physics-
based vision often do not score as high in metrics, compared to modern
deep learning. However, recent research, covered in this perspective, has
shown that physical models can be included as a constraint into data-
driven pipelines. In doing so, one can combine the performance benefits
of a data-driven method with advantages offered from a physics-based
method, such as intepretability, falsifiability, and generalizability. The
aim of this Perspective is to provide an overview into specific approaches
of how physical models can be integrated into artificial intelligence
(AI) pipelines, referred to as physics-based machine learning. We dis-
cuss technical approaches that range from modifications to the dataset,
network design, loss functions, optimization, and regularization schemes.

Keywords: Computer Vision, Physics-based Vision, Machine Learning

Modern approaches in computer vision are starting to combine insights from
machine learning techniques and physical models. This hybrid approach is
referred to as physics-based learning (Fig. 1). Computer vision has a special,
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inherent link to physics, compared to other forms of artificial intelligence (AI)
like language that draw primarily from symbolic entities. In particular, many
vision techniques infer properties of the physical world from images; and image
formation is a process that can be formalized by physical laws. For example, 3D
vision involves inference of scene geometry by leveraging physical models that
describe how real world points project to virtual camera planes [1, 2]. Video-
based computer vision, such as ego-motion control [3–5] leverages the physics
of motion to predict states of dynamic agents. The physics of motion takes
many forms in computer vision, from a rigid-body described by a trajectory
(i.e. group of rigid transformations in 3D space), to complex deformations
described by partial differential equations [6–8]. Even semantic tasks like object
recognition involve physics. Our semantic notion of an object can be seen
as a physical surface surrounded by a medium [9], capable of independent
physical motion from a surrounding scene, with geometric (e.g., proximity,
shape similarity) [10, 11], photometric (e.g., material similarity), or dynamic
(e.g., relative motion) [12] features.

Having described this close link between physics and the foundations of
computer vision, one would expect vision algorithms to heavily incorporate
physical knowledge. Though physics and vision algorithms are tightly coupled
in recent literature, this is a relatively recent development. It is fair to say
that physics has not been the focus of the past decade of computer vision.
Machine learning has been the focus. Even longstanding problems in vision
that have close ties to physical equations are now being addressed with a data-
driven approach. Consider the problem of shape reconstruction. The problem
was previously addressed with traditional techniques of light transport [18],
and now researchers have demonstrated better results when using a neural
network [19]. However, while data-driven performance can be superior to a
physical model alone, there are problems with a data-driven approach. A neural
network is not guaranteed to avoid predictions of shapes or objects that are
physically implausible. For example, a neural network for 3D reconstruction
will hallucinate detail that is below the resolvable limit of a stereo sensor. Since
we know this is not resolvable by a camera, physics would inform us a priori
that this prediction could be a hallucination. Quantifying the worst case error
of a data-driven approach is intrinsically hard due to the inductive hypothesis
implicit in data-driven methods. While theoretical machine learning research
aims to guarantee neural network performance by bounding error (referred to
as generalization bounds [20]), such bounds are only valid under assumptions
that cannot be validated in reality, for instance that the finite training data
and yet-unseen test data be drawn from the same unknown distribution.

For such reasons, a key question that is being asked is how do we incorpo-
rate physics into data-driven pipelines? The motivation is clear: physics and
data-driven techniques have complementary strengths and weaknesses, so per-
haps the combination will obtain the best of both worlds. Physics can offer
interpretable steps and the potential to generalize with limited data, but can
be too idealized to describe real-world scenarios. Data-driven methods can
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Fig. 1 Incorporating physics in neural pipelines in modern computer vision: A) Physics-
based learning enables a multitude of applications including motion prediction [13], image
restoration [14], and deweathering [15]; B) Deep learning networks can become physics-based
if trained on synthetic datasets with strong links to physical rules [16]; C) Neural network
architectures can incorporate physics as a constraint to the network topology (figure adapted
from [17]); D) Differentiable loss functions that incorporate a physical model can be used to
regularize neural networks.

return viable predictions when physical models have model mismatch error,
but are not interpretable and require large amounts of data. While combining
physics and data might be well motivated, the tactical question of how to com-
bine these entities does not have a single answer. A neural network has many
components (weights, losses, inputs, outputs, etc.) and there are multiple ways
to incorporate physics into neural networks, with differing tradeoffs.

In this Perspective, we discuss modern methods in vision that have success-
fully incorporated physics into data-driven pipelines. Many of these methods
succeed because they take a holistic approach to methods in visual rea-
soning. Reasoning in computer vision is usually of an inductive form, and
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Knowledge from Physics

Environment:  Described by Known Laws

Data Amount: Small

Generalizability: Good

Knowledge from Data

Physics + Data

Environment: No Governing Laws 
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Generalizability: Poor

Fig. 2 Illustrating when to approach a problem from a physics-based, data-driven, or
hybrid approach. If datasets are small, and environments match physics, then a physics-
alone approach makes sense. In contrast, if the dataset size is large and the environments
are “real” (deviating from all but the most ideal cases), then a data-driven approach is a
better candidate. As we discuss in this piece, many interesting problems benefit from com-
bining both approaches.

these methods incorporate data and physics into the inductive process. Induc-
tion is the process of inferring general conclusions from specific information.
Any inference process requires biases of some form. Biases can come from
design [21] (e.g. choice of an inference or optimization criterion, for instance
a segmentation functional or grouping criterion), from physical laws [22, 23]
(empirically-validated known constraints), or, as in the modern techniques,
from data-driven induction (e.g., the assumption that properties of a finite
dataset are shared by the entire distribution of possible data to be measured in
the future). Critically, the inductive process does not need to be purely based
on physics or data alone. Given where we are as a species, we do not need to
learn everything from scratch, so the question arises of how to best make use of
verified physical laws in visual inference. As the “why” has been discussed in
these introductory paragraphs, the remainder of this piece focuses on “when”
and “how” to incorporate physics into data-driven vision pipelines. In particu-
lar, Section 1 discusses “when” a problem might merit a physics-based learning
approach. Sections 2, 3, 4 focus on the “how” and discuss specific physics-
based AI tactics that pertain to datasets, architectures, and loss functions,
respectively.

1 When to Use Physics-Based Learning

A first question that this piece addresses is when to incorporate a combined
approach of physics and learning (refer Fig. 2). Learning here specifically refers
to inductive learning; the process by which a learner or learning algorithm
elucidates generalizable rules or functions from a specific set of examples or
data. In vision, the data collected by sensors like cameras are inherently lower
dimensional than the real world processes they attempt to observe. As such,
the data-driven inductive possibilities are assumed to be very large. In con-
trast, physics-based induction uses a first-order, idealized model that returns a
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smaller set of inductive possibilities. Therefore, physical laws may be used as an
additional inductive bias to reduce the set of generalizable functions provided
by a learning algorithm operating on data driven bias only, e.g., by pruning
or regularizing any clearly unreasonable solutions. Inductive bias refers to a
set of assumptions or rules that the learner uses to predict outputs of given
inputs that it has not encountered (i.e. at test time). Such a hybrid approach
is known as physics-based machine learning.

Let us return to the question of when to adopt a physics-based learning
approach. Consider two extreme cases. In the first case, an inference prob-
lem is posed that can just be solved with physics alone, e.g., solving for video
tracking of particle motion in an idealized setting. If the accuracy demands of
the problem are met with physics alone, the problem should be solved with
physics alone. In a second case, a problem can have a negligible relationship to
physics, unquantifiable by any form of physical model - such a problem should
be solved with data alone. Neither of these two cases are therefore suitable
for physics-based learning. However, tasks with partially predictive forward
and inverse problems e.g. including but not limited to object recognition in
degraded visual conditions [24], super-resolution of satellite imagery [25], sys-
tem failure prediction [26], are of a third case. These problems lie in a space
where physical models are inexact or physical parameters for the models are
unknown. In this case, we are better positioned to incorporate this model as an
inductive bias, rather than trusting the network to relearn an alternate version
of the physical model. A summary of these different paradigms are illustrated
in Figure 2).

Therefore, a scenario where physics-based learning should be considered is
one where the physics alone is meaningful but, by itself, does not optimally
address the inference problem. In particular, there are at least three key con-
siderations one must make in deciding to use physics-based learning: (1) the
goodness of data; (2) the goodness of physics; and (3) the ease of integrating
data and physics together. The next paragraph outlines technical approaches
to assess the “goodness” of data and physics.

There are a few ways to assess the goodness of data with respect to physics.
Consider in a first case where the physical model alone can predict the desired
task output: then we recommend the use of task performance as an assessment
metric. Concretely, the “goodness of data” can be assessed through metrics of
task performance using a data-driven approach and compared to the “goodness
of physics” by assessing the same metrics of task performance on the physical
model alone. While performance metrics are important, one should also con-
sider that the types of errors that a data-driven and physical approach could
be different. For example, in deep learning based stereo, one may observe that
a physics-based stereo method does not recover fine detail, while a data-driven
method is able to superresolve and hallucinate details. Since the data-driven
method and physics-based method have different behaviors on task perfor-
mance, the fusion of a deep learning based stereo with physics-based stereo
can be well motivated. However, what about a second case where the physics
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cannot predict the entire task output: is it still possible to assess the relative
quality of physics and data? While end-to-end task output might not be as
straightforward to use, one can appeal to representation probing where the
latent space in a data-driven model is regressed to see if it can predict physics.
A third option is to appeal to intermediate task behavior, where the perfor-
mance of a data-driven method is evaluated versus physical models on an
intermediate output that physics can predict, which may not be the final task.

Having discussed two conditions (the “goodness” of data, and of physics),
we turn to a third condition—the ease of integrating a given physical model
with data. A first remark is that integrating physics is easier if the physical
model is itself tractable. A tractable model is useful not only for intepretability,
but it also enables one to convert machine learning problems from a supervised
learning to a self-supervised learning problem, as in the case of deep learning
from monocular depth estimation [27–30]. In such examples, a stereo pair is
used for data collection, but only one camera is used in the machine learning
inference since it is monocular depth estimation. For this case, the problem
does not require annotation of data and is self-supervised. Another example of
incorporating physics and learning together is when a physical model does not
directly predict the inference output, but can prune unreasonable solutions.
For example, an object tracking task of dynamic agents like moving vehicles is
not described exactly by a physical model: behavioral intent of the driver plays
a large role in the possible dynamics. However, even this situation, physics
can be used to prune unreasonable solutions. For example, if an object tracker
estimates that the vehicle moves from two locations that are further apart than
a vehicle’s achievable speed would allow, then it can be flagged as a model
violation. Yet another type of relation between physics and data pertains to the
representation space of an AI pipeline, e.g., in probing a neural representation
to see if the physics can be decoded from the latent space. In summary, the
section takeaways are: (1) the choice of using a physics-based learning method
depends on the quality of physics and data in the problem; and (2) there are
specific tactical considerations to assess the value of physics and data in a
problem setting.

2 Incorporating Physics into AI Datasets

A first tier of incorporating physics into AI pipelines is to modify the dataset.
Even an ordinary neural network can become “physics-based” if the training
data used has a strong link to physics. This could be done through synthetic
and/or real data. In particular, synthetically generated datasets, where the
synthesis is constrained by physical laws (e.g., physics-based engines) helps
more efficiently focus the data distribution around the feasible set of data,
although it may not cover the tails of the distribution due to oversimplification
of synthetic engines. This points to a complementary statement, where coarse
behaviors can be captured by synthetic datasets, and fine nuances by raw data.
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Consider training an object tracker on two different datasets scenarios.
The scenario consists of simulated data of moving pedestrians and cars whose
motion is dependent on laws of physics and traffic laws. While this is not
a real-world scenario, the concocted, simulated example is dependent on the
rules of physics, and neural networks have been shown to implicitly learn
approximations of these rules. Now, consider a second scenario of real data of
moving pedestrians and cars in a chaotic city. The laws of physics no longer
directly predict the motion of pedestrians and cars, as the motion trajectory is
not one of a billiard ball, but an autonomous agent that can decide its motion
path, based on human behavior and psychology.

However, even in the second scenario, there are some base rules of physics
that do carry over (e.g. biophysics dictates that the speed of pedestrians cannot
be more than 25 miles per hour). It would be useful to force a network to
learn these laws, because many prediction errors we see on real-world object
detectors are easily flagged post-facto, because of their physical plausibility
(i.e. a pedestrian suddenly disappears from the face of the earth, or re-appears
further away in a scene than the maximum mobility of a pedestrian would
permit).

Flagging prediction errors post-facto, is suboptimal: in a deployed model
it would be akin to noting the occurrence of an accident after it happens. For
this reason it is useful to concoct physics-driven datasets that can be blended
with real data to improve AI tasks. For example, [31] used physical models of
object collision and intersection to create Stilleben, a framework for generating
realistic cluttered scenes for the task of semantic segmentation. Similarly, [32]
used UETorch, a version of the popular Unreal game engine with PyTorch
incorporated into the game loop, to train a model to predict whether a tower
of blocks would fall over and yet other work [33] incorporates a physics engine
into a generative model to be able to accurately predict object velocities based
on the objects’ physical parameters. Other approaches include [34, 35]. These
approaches rely on highly effective pipelines for synthetic data augmentation
[36].

A future frontier of the field is in increasing the (optical) realism of
physically-rendered datasets [37]. The field of physics-based rendering aims to
represent the physical properties of light as it travels through a scene. For-
tunately, raytracers and other forms of renderers are able to render scenes
in accordance with physical laws. Recent approaches known as differentiable
rendering, covered in [38], discuss how the forward raytracers are now dif-
ferentiable, enabling one to optimize scene parameters with respect to visual
outputs. This has been extended to more advanced scene physics, for exam-
ple, beyond photometry research like [39, 40] enable scene understanding in
context of polarized light. There are specific approaches that use differen-
tiable rendering like [41] that enable robust estimation of material properties
of objects in a scene given a sparse set of views as input. While many of these
works developed their own rendering methods, others have used Unity [42, 43],
Unreal Engine [44, 45], or other game engines [46], which employ physics-based
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rendering techniques. Using game-engine rendered synthetic data has allowed
many of these works to excel at many vision tasks, such as object detection
[44], object tracking [42, 45], or semantic segmentation [43, 46]. [47] developed
a physics based model to generate highly realistic faces with blood flow charac-
teristics, which provide robust synthetic data. The use of physical engines can
be used beyond the creation of data alone as a way to infer invisible quantities
in an image. Zhu et al. [48] demonstrate the inference of forces and pressures—
quantities not visible in an image—during human object interactions through
physically based simulation. In addition, physically based simulation can be
used for other domains, such as learning whether acoustic sensing in a 3D envi-
ronment can help navigation [49] or learning policies for object tracking with
unseen objects, nuisance objects, etc [50].

Despite these advances, there remains a domain gap in how synthetic
data maps to real data, underscoring the need for generative models that
are even more attuned to real-world physics. Fortunately, there is progress
in reducing the domain gap between the simulation and real world, through
techniques like domain randomization [51] or a related term, environment
augmentation [50, 52]. The basic idea of these techniques is to perturb the
generation process of synthetic data, such that the perturbations assist with
generalizing to real data. Despite the challenges that need to be overcome
to use synthetic data, the use of physically realistic generative models is
poised to be an impactful area of research that draws from vision, graphics,
and machine learning communities. In summary, the section takeaways are
that: (1) datasets can be simulated using known physical lows; (2) AI models
trained on this data will be inductively biased toward these laws; and (3)
simulation engines exhibit a domain gap (between the real and synthetic
worlds) that must be minimized.

3 Incorporating Physics into Network
Architectures

A second tier of incorporating physics into AI is to incorporate physics into
the inference function. Modern inference functions are deep learning models,
and hence this section of the Perspective will focus on incorporating physics
into deep learning architectures.

Coupled with recent advances in improving interpretability of deep learning
models, various techniques have emerged to incorporate physics and learning
together. One technique is known as residual physics, which (as the name
suggests) aims to use deep learning to learn the null space of what physics
cannot predict. A trivial, data-driven solution is to input video frames into a
convolutional neural network to predict trajectories. However, this would be
susceptible to the inaccuracies of a data-driven only approach (e.g. requiring
large amounts of data, predictions that can grossly violate laws of physics and
so on). In the residual physics school of thought (Fig. 3), one may note that
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Fig. 3 Two techniques to incorporate physics into machine learning pipelines. (top) Resid-
ual physics is an architectural choice where the neural network is geared to predict the
residual from the physical model. (bottom) Physical fusion is where physics is treated as a
multimodal input to a deep learning model. Late or early fusion can be used to combine
features from data and physics.

simple physics, i.e. a parabola equation, can predict the coarse motion arc of
the ball. One can then create a skip connection between the parabola prediction
and the neural network output. Now the neural network only needs to predict
the residual caused by model mismatch in the real data and the simple physical
prior of a parabola fit, e.g., air resistance, spin, etc. Many techniques leverage
residual physics. For example, [53] use residual physics to teach a robot named
‘TossingBot’ to grasp arbitrary objects from unstructured bins and to throw
them into target boxes. The residual learning is employed to predict throw
release velocity. TossingBot achieves 85% throwing accuracy. In addition, [54]
model uncertainty as residuals for the task of simulating planar pushing and
ball bouncing. Further, [55] combine residual physics with neural networks for
the task of predicting action effect from sensory data.

Residual physics is not the only way to incorporate physics into deep learn-
ing architectures. Indeed, for many problems, residual physics is perhaps not
even the best architecture; for example, it requires a fairly accurate physical
model to begin with, so that the residual can be bounded to a small norm.
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In cases where the physics is a weaker predictor of the output, it might be
useful to study a second approach, known as physical fusion, shown in Fig. 3.
In this technique, the physical prediction is provided as an input feature (in
contrast to residual learning where it was skip connected directly to the out-
put). One can think of the physical prediction as multimodal data, and the
network branches into multiple streams that eventually merge to predict the
output. This enables physical fusion to be useful in cases where the physics
itself is inaccurate and needs to be transformed in a non-linear way before it
can be merged into a meaningful representation. As a concrete example, con-
sider the Shape from Polarization [56, 57] problem in computer vision. The
goal is to estimate the surface normals of an object given photographs of the
scene through different polarizer angles. The relationship between polariza-
tion data and shape is a very complex physical model with many unknown
constants (like the refractive index, and surface specularity). Therefore, the
state of the art methods that use deep learning for shape from polarization
incorporate some form of physical fusion by concatenating approximate phys-
ical predictions with a dataset [19, 58]. Other work has used physical laws in
the form of rule representations as a second encoder branch, where the first
encoder branch is a pure data-driven encoder. These are then stochastically
concatenated via a control parameter alpha that regulates the strength of the
rule on the output. Yet when alpha is fixed prior to training, the trained model
cannot operate flexibly based on how much the data satisfies the rule, and
therefore rule strength is not adaptable to target data at inference if there is
any mismatch with the training setup. Recent work has shown by removing
this predetermined constraint on alpha, a higher rule verification ratio, and
thus more reliable predictions, can be achieved [59]. Here the rule verification
ratio is the fraction of output samples that satisfy the rules. Operating at a
better verification ratio could be beneficial, especially if the rules are known
to be always valid, as in physics.

While pure deep learning methods are currently used today to attempt
answers to scene-related questions such as “where” and “what” an object is,
scene understanding of shape, reflectance, and lighting can be improved by
incorporating physical priors [60]. The process of achieving these components
through intrinsic image decomposition can yield solutions to intricate problems
where the “ground truth” is not always available and unsupervised learning
with physics-based constraints dominates [61–63]. [64] used the superposition
of light to decompose an image with multiple illuminants into separate light-
source specific scenes. Learning how light affects an image leads to applications
in relighting, where the detected lighting can be replaced with a new source in
a different location and color spectrum [65]. Other applications include finding
hemoglobin and melanin concentrations on the face through the combination
of intrinsic image decomposition and molecule reflectance spectrum modeling
[66]. While the reconstruction problem is commonly applied to natural images,
the reverse problem of rendering is also inherently physics-based [38, 67–70].
In summary, the section takeaways are that: (1) neural architectures have
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Fig. 4 Combined loss functions that use both data-driven annotations and physical con-
straints. When outputs of a traditional deep learning model are physical quantities, this last,
output layer lives in a hybrid world. A compelling case for physics-based learning is made:
it is easy to place a loss on the output layer that is based on annotated labels and physical
models, as shown in the figure.

emerged that incorporate physics as a constraint or inductive bias; (2) two
common example architectures are physical fusion and residual physics; and
(3) the choice of architecture is based on factors that include the relevance of
the physical model.

4 Incorporating Physics into Network Loss
Functions

Related to the previous tier of modifying the neural network topology, a third
tier of incorporating physics into deep learning is to incorporate physics into
the loss function. When the physical model is known, it can be incorporated
into the loss function as a form of regularization. An example is shown in
Fig. 4, which involves a data-driven annotation loss and additional loss terms
from physical constraints. A few general trends are observed: (1) the loss func-
tions are inspired by well-defined physical priors; (2) these physical priors are
often highly domain-specific; and (3) the loss functions are differentiable to
enable gradient based learning. If the ground-truth physics is not in a differen-
tiable form, a relaxation to a differentiable function can be used. We will now
illustrate a few examples, drawing from diverse tasks in computer vision.

For example, consider the task of vision in bad weather [71]. In this sub-
field, one goal is to recover a sharp image (e.g. of an outdoor scene) given an
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input image (which may be corrupted by haze). Since such adverse weather
is characterized by the physics of light transport and scattering, we often see
differentiable expressions incorporating the physics of light transport and scat-
tering making their way into neural loss functions. For example, [72] proposes
a new edge-preserving loss function to enable accurate estimation of the trans-
mission map for dehazing. Loss functions evolve over time, as [73] uses different
physics-based priors in the loss formulation to enable synthetic to real transfer
of dehazing models. Incorporating physics into the loss function is not lim-
ited to weather problems. The task of shadow detection and removal also sees
tangible benefits from physics-based loss function design. For example, [74]
uses an adversarial shadow attenuation model to improve shadow detection;
the shadow-attenuation model relies on a physics-inspired loss incorporating
shadow-domain knowledge. Another method in the same area, introduced in
[75] uses physics-based chromaticity, boundary smoothness and perceptual fea-
tures for single image shadow removal. Human body pose estimation is another
area in computer vision that leverages physical priors. Various works incorpo-
rate the physics of the human body into the supervision for a network, via loss
functions on reprojection [76] or joint pose optimization that are combined
with data-driven losses [77].

Physics-based loss functions also find significant use in computational
imaging tasks as well. For the purpose of positron attenuation correction
in computed tomography (CT) imaging, [78] proposes a novel line integral
projection loss, consistent with attenuation physics, that leads to improved
reconstruction. Other authors have [79] proposed using translation-invariant
loss functions for the task of Non Line-of-Sight correlography. And in lens-
less microscopy, [80] reconstruct phase by fitting the network weights to the
captured intensity measurements. Instead of optimizing phase directly, the
network optimizes the angular spectrum representation of the measurement
in the object plane, allowing an unsupervised training setup. These diverse
imaging setups each have their own ad-hoc loss function setups, but the com-
mon theme of having a closed-form, differentiable expression that encapsulates
domain knowledge is a cross-cutting theme in this area. Looking ahead, much
of the future work lies in finding expressions that are both physics-based and
yet also differentiable. In cases where this is not always possible, we expect
that future work will find relaxations, or use learning to set the parameters of
a simpler, differentiable model. In summary, the section takeaways are that:
(1) loss functions can incorporate a physical model to regularize a neural net-
work; (2) physics-based loss terms should ideally be differentiable; and (3)
if the physics is in a form that does not admit a differentiable loss, then a
physically approximate loss that is differentiable can be developed.

5 Future Outlook and Conclusions

The integration of deep learning methods with physics introduces an opportu-
nity to better understand and predict noisy complex natural physical systems.
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As discussed here, the integration in these hybrid systems can occur at various
levels, from the training data to novel network architectures and loss objec-
tives. As reviewed here, these methods have already shown much promise in
enhancing performance in a multitude of forward prediction tasks - object
tracking, motion prediction, physical consequences of robot actions, etc. -
and inverse problems - scene de-weathering, super-resolution reconstruction of
remote imagery, inverse 3D rendering, and more.

An additional direction that is perhaps a few years out lies in unsuper-
vised discovery of physics from visual scenes. We discussed earlier in the piece
the work from many authors who have used known physical relationships to
recover parameters or directly infer a desired output. However, in some prob-
lems one might not have sufficient knowledge of either the underlying physical
law or its parameters. This unknown-unknown problem is known as distilling
physical laws from data. Physical laws are a human construct, expressed in
human language, while recent work with large-scale neural networks hypothe-
sizes the emergence of an “inner language,” separate from the human language
in which they are trained [81]. A network may then encode physical laws
implicitly already, in a language that may not be interpretable by humans. It
can be shown that abstract concepts, such as laws of physics, can be finitely
represented by a neural network, and are in principle learnable, but exter-
nal observers cannot know if and when such a concept has been positively
encoded [23], although the hypothesis can be falsified. Work in this area is
nascent [13, 82–85] and mostly confined to limited settings with relatively
simple physical laws for the moment.

The methods described in this Perspective will also play a central role
in enabling a next generation of deep neural networks that learn more like
biological systems [36, 86–88]. Humans are able to acquire rich internal rep-
resentations of the physical compositionality of the world by interacting,
multimodally and continuously, with objects [89, 90]. By having the ability to
reason about the physical properties of the world, as described here, it may
become possible to develop novel neural network architectures that are able
to interpret scenes by decomposing objects into their physical properties (e.g.,
shape, surface normals, color) [91], and enabling robust generalization of the
learnt knowledge to novel tasks [92].

As this article is being written, modern large language models (LLMs)
are exhibiting a remarkable ability to “reason” about many topics, and this
includes physics. For example, a recent LLM has shown an ability to outper-
form the average human test-taker on the Advanced Placement (AP) Physics
test, used in the United States [93]. This exciting result should be tempered
with the caveat that LLMs cannot learn completely new concepts that are
not in their training data [94], and suffer from hallucinations when trying to
extrapolate beyond the training data. However, since an LLM is inherently a
learning-based method, the ideas in this piece of physics-based learning can
be used in a similar fashion as has been discussed to incorporate physics
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into LLMs. This includes specific ways to incorporate physics into datasets
(Section 2), architectures (Section 3) or loss functions (Section 4).

The field of physics-based deep learning provides a path to integrating
critical physics knowledge for many visual domains, and also opens the door
to novel learning paradigms that will enable a new generation of applications.
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