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ABSTRACT

Deep Neural Networks (DNNs) have emerged as powerful tools for human action recognition, yet their reliance
on vast amounts of high-quality labeled data poses significant challenges. The traditional approach of collecting
and labeling large volumes of real-world data is not only costly but also raises ethical concerns. A promis-
ing alternative is to generate synthetic data. However, the existing synthetic data generation pipelines require
complex simulation environments. Our work presents a novel solution by employing Generative Adversarial Net-
works (GANs) to generate synthetic yet realistic training data from a small existing real-world dataset, thereby
bypassing the need for elaborate simulation environments. Central to our approach is a training pipeline that
extracts motion from each training video and augments it across varied subject appearances within the training
set. This method increases the diversity in both motion and subject representation, thus significantly enhanc-
ing the model’s performance in accurately recognizing human gestures. The model’s performance is rigorously
evaluated in diverse scenarios, including ground and aerial views, to demonstrate the method’s versatility and
effectiveness. The findings of our study highlight the efficiency of GAN-based data augmentation, utilizing a
minimal real dataset to create synthetic data without relying on complex simulators. Moreover, useful insights
are provided by analyzing the critical factors influencing gesture recognition performance, such as the diversity
in gesture motion and the diversity in subject appearance.
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1. INTRODUCTION

Human Action Recognition (HAR) is an important task in the field of computer vision, with numerous appli-
cations,1,2 including surveillance for safety and security,3 patient monitoring in healthcare,4 sports analysis for
performance enhancement,5 autonomous vehicles for pedestrian detection,6 and human-computer interaction.7

At its core, HAR aims to automatically recognize human actions from a series of observations (image frames),
typically a video. The advent of Deep Neural Networks (DNNs) has significantly advanced the state-of-the-art
in this domain. However, the efficiency of these models is heavily dependent on the availability of large, high-
quality labeled datasets. The conventional method of manually collecting and analyzing real-world data is not
only time-consuming and costly but also raises potential ethical and privacy concerns.

In an effort to address these challenges, researchers have explored the generation of synthetic data as an
alternative to real-world data collection. One of the primary benefits of synthetic data is its ability to be rapidly
scaled and easily labeled, which is particularly useful for data augmentation purposes. However, traditional syn-
thetic data generation approaches require either advanced computer graphics or complex simulation environments
with physics engines, which are not only challenging but also require significant resources. These limitations
underscore the need for a solution to circumvent the complexities associated with conventional synthetic data
generation systems.

Our work introduces a novel approach to generate synthetic yet realistic training data for human action recog-
nition using Generative Adversarial Networks (GANs) from a small existing real-world dataset. By leveraging
minimal real-world data, we bypass the need for complex simulation environments and significantly reduce the
barriers to entry for synthetic data generation in HAR. Our method focuses on extracting motion from training
video and augmenting it across varied subject appearances, thus enhancing both the diversity and the volume



of the available training data. This paper presents a comprehensive evaluation of our model’s performance
across diverse scenarios and demonstrates the effectiveness of GAN-based data augmentation in overcoming the
challenges associated with traditional data collection and synthetic data generation methods.

2. RELATED WORK

The landscape of Human Action Recognition (HAR) has been profoundly shaped by the integration of deep
learning techniques, with Deep Neural Networks (DNNs) at the forefront, to achieve state-of-the-art perfor-
mance. The need for extensive, labeled datasets has been a persistent hurdle, sparking interest in synthetic data
generation as a viable solution. Synthetic data augmentation is crucial in enhancing DNN performance for HAR
by expanding the training dataset with modified versions of the existing data to include more variation.

2.1 Synthetic Human Action Recognition Datasets

Several synthetic video datasets have been created in recent years to train HAR deep learning models. The
Game Action Dataset (GAD)8 dataset explores the gaming domain for data generation. It comprises recordings
from gaming sessions in GTA5 and FIFA performed by human players. This dataset derived from the gaming
environment includes synchronized ground and aerial views. A player’s command controls the character’s motions
in the game. The PHAV9 dataset uses a modern and accessible game engine (Unity®Pro) to synthesize a labeled
dataset. This dataset is produced using an interpretable parametric generative model of human action videos,
which depends on computer graphics techniques (procedural generation) of modern game engines.

SURREACT (Varol et al., 202110) utilizes 3D human motion estimation models, including HMMR (Kanazawa
et al., 201911) and VIBE (Kocabas et al., 201912), for reconstructing human body meshes and motions from
single-view RGB videos. The dataset employs the SMPL (Loper et al., 201913) statistical model for the body
mesh, augmented with randomized cloth textures, lighting conditions, and body shapes to enhance diversity.

The SynADL14 dataset, focusing on the Activities of Daily Living (ADL) of elders, incorporates 3D human
characters created through Kinect sensor scans of 15 participants, whose Motion Capture (MoCap) data animate
the characters, aiming at detecting ADL with precision. A significant amalgamation by Kim et al. (2022) resulted
in the SynAPT15 dataset, integrating PHAV, SURREACT, and SynADL for pre-training models adaptable to
novel downstream tasks encompassing entirely new categories. BABEL16 introduces a comprehensive dataset
featuring detailed language labels for MoCap sequences. It uniquely categorizes actions into sequence and frame
labels, aligning each action with its exact duration in the MoCap data across over 250 distinct action categories.

The RoCoG17 and its successor RoCoG-v218 datasets, designed for human-robot interaction, are based on
seven gestures from the US Army Field Manual.19 While RoCoG offers a static ground view, RoCoG-v2 extends
this with static ground and aerial views. Moreover, RoCoG contains only manually designed motions, whereas
RoCoG-v2 introduces MoCap data for some motions. These methods use virtual environments to generate
synthetic data and examine how variations in the environment and character models affect recognition accuracy.
Their findings underscored the benefits of diversity in synthetic datasets and the challenges in achieving sufficient
realism and variability.

Panev et al. (2024)20 explored the impact of different rendering methods and motion quality on the effec-
tiveness of synthetic data for action recognition tasks. Their study highlighted the potential of high-quality
renderings to improve model performance and noted the complexity and computational demands of creating
such environments. It introduces four unique synthetic datasets generated through a synthesis of MoCap and
video-based motions with rendering techniques like Computer Graphics (CG) and neural rendering.

Prior work in this area used complex simulation environments to create synthetic data. Unlike previous
methods that require elaborate setup and customization, our approach generates diverse and realistic synthetic
data from a small set of real videos, effectively circumventing the need for complex simulation environments.



2.2 Real Human Action Recognition Datasets

HMDB5121 marked a significant leap forward with its collection of 51 diverse action categories, while UCF-
10122 further enriched the landscape with 101 activity classes across five categories. NTU-RGB+D120,23 which
introduced a large multi-view dataset with 120 action classes and included depth map sequences, 3D skeletal data,
and infrared videos for each sample. The Charades24 dataset, consisting of 157 action classes, is composed of
hundreds of people recording videos in their own homes, acting out casual everyday activities. The ActivityNet25

dataset contains 200 different types of activities of videos collected from YouTube.

The introduction of the Kinetics series (Kinetics-400,26 Kinetics-600,27 Kinetics-700,28 and Kinetics-700-
202029) was pivotal, offering a vast array of categories and nearly a 1,000 videos per category, significantly
boosting the field’s development. Further diversification in dataset perspectives was achieved with Charades-
Ego30 and HOMAGE,31 presenting daily activities from both first and third-person views.

The Okutama-Action,32 UAV-Gesture,33 PRAI-1581,34 and AVI35 datasets offer focused insights into human
action recognition, Unmanned Aerial Vehicle (UAV) control gestures, person ReID, and violent action recognition,
respectively. The UAV-Human dataset,36 notable for its aerial capture of human activities through UAVs in
various settings, became the largest real HAR dataset featuring aerial views. Additionally, the YouTube-Aerial
Dataset (YAD)37 contributed aerial videos from YouTube, showcasing dynamic camera movements and varying
altitudes. RoCoG17 and its successor, RoCoG-v2,18 enriched the dataset landscape by including real data for
the same categories as their synthetic counterparts, with RoCoG-v2 adding aerial perspectives to the mix.

2.3 Generative Adversarial Networks (GANs) in Data Generation

A rapidly growing area of research is the application of Generative Adversarial Networks (Goodfellow et al.,
201438) for data argumentation in HAR. Unlike traditional data augmentation techniques, GANs can generate
new data instances that retain the underlying structure of the action while varying in appearance and con-
text. This capability is particularly advantageous for HAR, where diversity in motion and diversity in subject
appearance are crucial for improving model performance, robustness, and generalization.

GANs have emerged as a powerful class of machine learning frameworks that are capable of generating high-
quality, realistic synthetic data. GANs consist of two neural networks, a generator and a discriminator, that
are trained simultaneously through a competitive training process. The generator aims to produce data samples
that are indistinguishable from real data, while the discriminator aims to distinguish between real and generated
data samples accurately. This paradigm has been applied in various domains, including image generation,39 style
transfer,40 domain adaptation,41 and more recently, in augmenting datasets for machine learning tasks.42

Models such as Liquid Warping GAN (Liu et al., 201943) and Everybody Dance Now (Chan et al., 201944)
have revolutionized the generation of action videos through the transfer of body poses from one individual’s
performance video to another person, either from a different video or a single image. These models facilitate
the creation of diverse action sequences by adapting the appearance of the subject based on the selected visual
source image, thereby enabling a wide range of applications in video synthesis and modification.

Unlike the traditional computer graphics workflow, which is both time-consuming and manually intensive
for scene design, GANs utilize a model that has been pre-trained on human motion datasets. This significantly
reduces the time required to produce synthetic video sequences for HAR. This method not only addresses
the limitations associated with the collection of large real-world datasets and the use of complex simulation
environments but also paves the way for more generalized and robust HAR models.

3. DATASET

Our experiments are performed on real video data from the RoCoG-V218 dataset, which contains both ground
and aerial views. The dataset consists of 11 adult subjects (10 males and one female) and includes diverse age
ranges and clothing types. The subjects are divided into train, validation, and test split according to Table 1. The
authors carefully selected a set of four subjects to form the test set, which included the only female participant
and reflected the diversity in the background location, body build, and skin color.



Table 1. Subjects divided into training, validation, and test sets.

Train Validation Test

Ground
Subject No. 1, 3, 5, 7, 8 2, 10 0, 4, 6, 9

No. Training Samples 25, 20, 62, 34, 21 21, 21 21, 34, 24, 21

Air
Subject No. 5, 7, 8 10 0, 4, 6, 9

No. Training Samples 22, 23, 21 21 28, 22, 20, 21

The ground view dataset, shown in Figure 1, comprises the training set consisting of 162 videos of five
subjects, the validation set consists of 42 videos of two subjects, and the test set consists of 100 videos of four
subjects.

Figure 1. Ground view dataset: a) training subjects (left), b) validation subjects (middle), and c) test subjects (right).

The aerial view dataset, shown in Figure 2, comprises the training set consisting of 66 videos of three subjects,
the validation set consists of 21 videos of one subject, and the test set consists of 91 videos of four subjects. All
the subjects perform multiple instances of the seven gesture classes in both ground and air perspectives.

Figure 2. Aerial view dataset: a) training subjects (left), b) validation subject (middle), and c) test subjects (right).



4. EXPERIMENTS

The OpenMMLab’s MMAction245 framework is used for training and evaluating human action recognition
models. More specifically, the Inflalted 3D ConvNet (I3D)46 (ResNet50-based) model, which is a popular deep
video activity recognition model, is employed. The input to the model is a 32-frame sequence of 256x256 pixels,
where the video is resized as needed. Data augmentation techniques include random horizontal flip and scale
augmentations for all the approaches. All the models are trained for 20 epochs, starting with the Kinetics-40026

pre-trained weights and use top-1 classification accuracy to compare their performance. Training employs a
Stochastic Gradient Descent (SGD) optimizer with specific parameters: learning rate = 0.002, momentum =
0.9, weight decay = 0.0001.

For generating the dataset, the Liquid Warping GAN (LWG)43 with Attention is used. The LWG serves as
a unified framework for synthesizing human images, mimicking human motion, transferring appearances, and
creating new viewpoints. It also features a 3D body mesh recovery module that employs SMPL13 to separate
and analyze the pose and body shape aspects effectively. Unlike the complex and time-consuming CG pipelines,
the model in LWG has been pre-trained on priors to generate human motion videos, thus reducing the processing
time for generating synthetic video sequences for HAR. Here LWG is used to extract motion from a subject in
one video and then apply it to the visual appearances of different subjects within the training dataset.

Four experiments are devised to explore the impact of synthetic data augmentation. The first experiment
establishes a baseline action recognition performance by training the model on the original real data. The next
two experiments aid in evaluating the influence of variations in subject appearance and variations in motion
on recognition performance. Finally, the last experiment trains the model with a complete synthetic dataset
generated by translating the motion of all the subjects to the appearance of all the subjects.

4.1 Experiment 1: Original Training Data

The first experiment aims to establish the baseline action recognition performance on the real dataset presented
in Section 3 without any synthetic data.

4.2 Experiment 2: Motion of one subject →Appearance of all subjects

The second experiment, “One Motion All Appearances (1MAA),” aims to analyze the influence of diverse vari-
ations in subject appearance on action recognition performance. To achieve this, the motion of one subject is
extracted and transferred to the appearance of all the subjects in the training dataset. An example is shown in
Figure 3, in which the motion of subject number 1 is transferred to the appearance of all the subjects. Only a
single image of the target subject is required to perform the translation.

4.3 Experiment 3: Motion of all subjects →Appearance of one subject

The third experiment, “All Motions One Appearance (AM1A),” is designed to analyze the influence of diverse
variations in motion on action recognition performance. The underlying motion of all the subjects is transferred
to the appearance of a single subject. For example, the actions performed by all the subjects are translated to
the appearance of subject number 5 as shown in Figure 4.

4.4 Experiment 4: Motion of all subjects →Appearance of all subjects

The final experiment, “All Motions All Appearances (AMAA),” shows the effectiveness of data augmentation
on the HAR performance. This experiment consists of extracting the motion of all the subjects and transferring
it to the appearance of all the subjects. Thus increasing the diversity in both the motion and appearance of
subjects.



Figure 3. The gestures performed by subject number 1 are translated to the appearance of all the subjects.

Table 2. The results (top-1 accuracy %) of all four experiments.

Experiment No. Experiment Name Ground % Aerial %

1 Original Data 84.00±2.74 65.93±3.56

2 One Motion All Appearances (1MAA) 87.04±4.09 68.79±5.86

3 All Motions One Appearance (AM1A) 85.64±3.96 67.99±6.45

4 All Motions All Appearances (AMAA) 88.40±0.55 73.63±5.04

5. RESULTS

The results of all four experiments are presented in Table 2.

Below are specific observations from each experiment.

Experiment 1: The baseline action recognition performance achieved when training on the real dataset is
(84.00 ± 2.74 %) and (65.93 ± 3.56 %) for the ground and air datasets, respectively. The results show the mean
and standard deviation over five runs with different random seed values.

Experiment 2: For each subject, the synthetic data is generated as described in Section 4.2 and is augmented
to the real dataset. Each experiment uses the motion from only one subject, therefore creating diversity in subject
appearance but not the motion. Similarly, this is performed for all the subjects. The results of these experiments
are shown in Table 3.



Figure 4. The gestures performed by all the subjects are translated to the appearance of subject number 5.

Table 3. The results (top-1 accuracy %) of Experiment 2.

Subject No. Ground % Aerial %

1 89.4±2.41 -

3 85.2±5.26 -

5 87.6±3.97 70.11±5.29

7 88.2±2.05 71.87±6.80

8 84.8±5.22 64.40±2.76

Average 87.04±4.09 68.79±5.86

The average performance over all the subjects is (87.04 ± 4.09 %) and (68.79 ± 5.86 %) for the ground and
aerial datasets, respectively. The results in Experiment 2 are significantly better than in Experiment 1 (baseline),
implying that increasing the variations in subject appearance alone can improve the model’s action recognition
performance.

Experiment 3: For each subject, the synthetic data generated as described in Section 4.3 is augmented to
the real dataset. Each experiment uses the appearance of only one subject, therefore creating diversity in subject
motion but not the appearance. This is performed in a similar fashion for all the subjects. The results of these
experiments are summarized in Table 4.



Table 4. The results (top-1 accuracy %) of Experiment 3.

Subject No. Ground % Aerial %

1 84.0±4.64 -

3 84.4±4.51 -

5 86.2±2.95 68.13±2.69

7 88.0±4.64 66.37±7.36

8 85.6±3.05 69.45±8.84

Average 85.64±3.96 67.99±6.45

The average performance over all the subjects for Experiment 3 is (85.64 ± 3.96 %) and (67.99 ± 6.45 %) for
the ground and aerial datasets, respectively. The average performance of high diversity in motion (Experiment
3) is slightly better than the baseline (Experiment 1). However, high diversity in appearance (Experiment 2) is
better than that of high diversity in motion (Experiment 3). Therefore, it can be inferred that augmenting the
real data with higher diversity in subject appearance performs better than higher diversity in subject motion.

Table 5 shows the number of training samples used in each experiment. In Experiment 2, named “One
Motion All Appearances (1MAA),” each subject had a different amount of synthetic data generated. This varied
amount is because each subject has a different number of training samples to begin with. On the other hand,
in Experiment 3, “All Motions One Appearance (AM1A),” since we use motion from all the videos, the same
amount of synthetic data is generated for all the subjects.

Crucially, the dataset augmentation with a synthetic but smaller subset (Experiments 2 and 3) yields an
enhancement in HAR performance. This enhancement is particularly pronounced when the augmented dataset
is characterized by a greater variance in appearances rather than motions. The rationale underlying this obser-
vation is that the augmented motions, despite their variance, are not novel constructs but are instead derivations
extrapolated from the original dataset. The final experiment contains the full spectrum of motions and appear-
ance and yields the highest accuracy for both datasets, suggesting that a more varied training set that includes
all motions and all appearances tends to result in better model performance.

Experiment 4: For this experiment, the motion extracted from each subject is transferred to the appearance
of all the subjects, thus significantly increasing the diversity in motion and appearance. The generated dataset is
augmented with the original dataset and used to train the model. From the results in Table 2, it is observed that
the model achieves a classification accuracy of (88.40 ± 0.55 %) and (73.63 ± 5.04 %) for ground and aerial
datasets, respectively. Therefore, GAN-based synthetic data augmentation achieves a significant performance
improvement in human action recognition over the baseline.

6. CONCLUSION

Our research presents a novel solution to the generation of synthetic yet realistic training data from a small
existing real-world dataset by employing Generative Adversarial Networks (GANs), which avoids the need for
elaborate simulation environments. The proposed method increases the diversity in both motion and subject
representations, thus significantly improving the model’s gesture recognition accuracy. Our work further explores
the critical factors influencing the action recognition performance, such as variations in motion and variations
in subject appearance. Finally, our experimental results indicate that augmenting the real data with synthetic
data with higher diversity in subject appearance performs better than higher diversity in subject motion.
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Table 5. Number of Training Samples by Experiment and Subject

Experiment Name Subject No.
No. Training Samples

Ground Aerial

1MAA

1 287 -

3 262 -

5 472 132

7 332 135

8 267 129

AM1A

1 324 -

3 324 -

5 324 132

7 324 132

8 324 132

Average 1MAA 324 132

Average AM1A 324 132

Original Data 972 264

AMAA 162 66
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