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Fig. 1: FLEET — Formal Language-grounded Execution and Efficient Teaming is a hybrid generative—formal framework
for natural-language multi-robot tasking. Free-form operator instructions (bottom examples) are ingested by an LLM that (3)
decomposes the command into a task graph and constraints and (4) estimates a robot—task fitness matrix. A formal mixed-
integer linear programming (MILP) scheduler solves a makespan-minimization problem under precedence, capacity, and
spatial constraints to produce a multi-robot schedule (6). Robots execute the plan (7) while streaming status and perception
to a World Model (8-9); deviations (delays, failures, new detections) trigger closed-loop replanning back to the LLM and
scheduler (10). The architecture supports heterogeneous teams (e.g., IR and RGB/VLM Spots) and yields interpretable
artifacts—task graph, fitness matrix, and schedule—that explain decisions.

Abstract— Coordinating heterogeneous robot teams from
free-form natural-language instructions is hard: language-only
planners struggle with long-horizon coordination and hallucina-
tion, while purely formal methods require closed-world models.
We present FLEET, a hybrid decentralized framework that
turns language into optimized multi-robot schedules. An LLM
front-end produces (i) a task graph with durations and prece-
dence and (ii) a capability-aware robot—task fitness matrix;
a formal back-end solves a makespan-minimization problem
while the underlying robots execute their free-form subtasks
with agentic closed-loop control. Across multiple free-form
language-guided autonomy coordination benchmarks, FLEET
improves success over state of the art generative planners on
two-agent teams across heterogeneous tasks. Ablations show
that mixed integer linear programming (MILP) primarily
improves temporal structure, while LLM-derived fitness is
decisive for capability-coupled tasks; together they deliver the
highest overall performance. We demonstrate the translation
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to real world challenges with hardware trials using a pair of
quadruped robots with disjoint capabilities.

[. INTRODUCTION

Coordinating heterogeneous robot teams in open-world
environments remains a central challenge in robotics. Un-
like structured factories or warehouses, homes, offices, and
disaster sites are dynamic, partially observed, and under-
specified at design time. A planner must translate free-form
instructions into executable multi-robot strategies, respect
capability and resource constraints, and adapt online to
delays, perception errors, and newly discovered goals. Purely
formal methods provide guarantees but assume closed-world
models with carefully engineered predicates and costs; purely
generative methods (e.g., LLM planners) offer semantic
flexibility and rapid iteration from language, but struggle
with long-horizon coordination, precedence tracking, and
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hallucination.

We subscribe to the recent trend that language models and
formal optimization are complementary. The contributions
of hybrid approaches have been primarily demonstrated on
single robots. In this work, we introduce hybrid generative
and formal optimization concepts for multi-robot coordina-
tion. LLMs excel at semantic front-end tasks—decomposing
natural language into subtasks, exposing commonsense or-
dering, and explaining why a robot is (or is not) suit-
able for a role—while a formal back-end can guarantee
feasibility and optimize the team schedule under explicit
constraints. This paper presents FLEET, illustrated in Figure
1, a hybrid framework that embeds LLM-derived artifacts
into a makespan-minimizing scheduler. Given a free-form
instruction and a short profile of each robot, the system
produces: (i) a task graph with durations and precedence, (ii)
a robot—task fitness matrix aligned with capabilities, and (iii)
a multi-robot schedule with start times and assignments. The
scheduler enforces precedence, non-overlap on each robot. It
runs in anytime mode with tight caps and falls back to fast
Auction allocators when needed, yielding interpretable plans
that can be executed by lightweight reasoning agents.

Empirically, over multiple free-form language-guided au-
tonomy coordination benchmarks [1], our method improves
success on heterogeneous team tasks over strong language-
model planners, and ablations show that the combination
of capability-aware fitness and formal scheduling is crucial.
Hardware trials with two Boston Dynamics Spots (IR vs.
RGB/VLM) highlight safety benefits (deconfliction in the
center field) and reduced idle during cross-modal inspections.

II. RELATED WORK

A. Formal Methods for Multi-Robot Coordination

Classic Multi-Robot Task Allocation (MRTA) [2], [3]
includes exact assignment with Hungarian [4], market-
based auctions and contracts for scalability [3], [S]-[7],
and greedy/list-scheduling heuristics with provable bounds
in simplified settings [8]. Beyond one-shot pairing, tempo-
ral/resource constraints are handled via MILP or constraint
programming [9], yielding optimal or bounded-suboptimal
schedules with explicit feasibility guarantees. These ap-
proaches rely on structured models and carefully tuned costs,
which limits application to open-world, language-specified
missions.

B. Generative Planning for Single Robots

Language-guided decision making has advanced via LLM-
grounded planners and vision-language action models, e.g.,
SayCan/SayNav [10], [11], RT-1/RT-2 and related policy
models [12]-[14], and tool-use agents such as ReAct and
successors [15], [16]. Low-level control is often delegated to
trajectory optimizers or learned diffusion/flow policies [17],
[18]. While these systems can follow open-ended instructions
and improvise with tools, they typically plan for one robot
and degrade on long-horizon, tightly constrained tasks.

C. LLM-based Centralized Multi-Robot Planning

LLMs have been used to map team-level goals to subtask
assignments and dialogue among agents [16], [19]-[21].
SMART-LLM [22] is a representative centralized planner
in which a single LLM decomposes and allocates sub-
tasks to robots. Benchmarks such as PARTNR [1] (built
on Habitat [23]) expose persistent weaknesses of purely
generative planners on multi-agent tasks: coordination errors,
precedence violations, and poor recovery from partial failure.

D. Hybrid Formal-Generative Single Robot Execution

Recent work uses LLMs to produce symbolic struc-
tures for classical solvers—PDDL domain/goal synthe-
sis [24], temporal logic specifications [25], [26], precondi-
tion/postcondition checking [27]-[29], factor-graph formu-
lations [30], or linear programs [31]. Two-stage pipelines
show that LLMs can propose subgoals which are then solved
by a combinatorial back-end [32]. Our approach differs by
focusing on multi-robot coordination and jointly using (i) an
LLM-derived task graph and (ii) an LLM-derived, capability-
aware fitness matrix as inputs to a makespan-minimizing
scheduler. This yields feasible, optimized schedules that
remain semantically aligned with the original instruction and
robot capabilities, and it enables clear ablations (MILP only,
fitness only) and fast fallback to auction assignment under
strict latency caps.

E. Contributions

We contribute a practical and interpretable pipeline for
language-guided multi-robot coordination in open-world set-
tings:

o Hybrid planning architecture. An LLM front-end

produces a task graph and a robot-task fitness matrix;
a formal back-end (MILP with anytime settings) com-
putes a schedule that enforces precedence, non-overlap.

« Allocator plug-ins and anytime operation. The sched-
uler supports MILP, Auction back-ends behind a shared
interface; MILP runs with strict time/gap caps and
warm-starts, and the system falls back to heuristics to
guarantee progress.

« Execution with reasoning agents. Each robot executes
assigned subtasks via a constrained tool-use loop (navi-
gation, perception, manipulation) and streams status to a
shared world model, triggering event-based replanning
when needed.

« Comprehensive evaluation. We compare against state-
of-the-art language-model planners and run ablations
isolating the roles of fitness and formal scheduling
across multiple PARTNR benchmark categories. Hard-
ware trials with two heterogeneous Spots validate safety
(deconfliction) and efficiency (reduced idle) in cross-
modal tasks.

III. METHODS

Our framework blends the semantic flexibility of LLMs
with the coordination guarantees of formal optimization. A
single pipeline converts a free-form instruction into three
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Fig. 2: PARTNR Free-form Language-guided Benchmarks Partnr free-form language mulit-agent benchmarks builds on
habitat-sim and introduces several categories of free-form language-guided tasks to be completed by one or more agents.
The categories include “Constraint Free” where the subtasks are separable and do not necessarily depend on each other,
“Heterogeneous” where the agents have disjoint capabilities that must be leveraged correctly to complete the tasks, and
“Temporal” where the tasks have an implied dependency structure among the subtasks. This Figure illustrates a task from
the Heterogeneous task set where agents are acting on the command “Take all of the glasses from the bedroom to the kitchen

and wash them”. In this example, the human agent can clean and the quadruped robots can not.
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Fig. 3: Hardware trial: Maneuver with implied dependen-
cies (a) Operator instruction. (b) Planner output: schedule
with 3 m segments and enforced alternation. (c—f) Execution
frames showing alternating advances.

concrete artifacts: (i) a task graph with durations and
precedence, (i) a robot—task fitness matrix that captures
capabilities and preferences, and (iii) a multi-robot schedule
(start times and assignments).

A. Problem Setup and Artifacts

We consider a heterogeneous team R = {1,...,n} and
a set of tasks T = {1,...,m}. Each task j has duration
d; > 0, optional precedence constraints Pred(j) C T, and
optional time windows [r;,¢;]. Robots have capabilities C;
(e.g., thermal QA, VLM QA), which induce a feasibility
mask g;; € {0,1} (task j is feasible for robot ¢ iff required
capabilities are in C;). The LLM also returns a normalized
fitness score f;; €[0, 1] indicating how suitable robot ¢ is for
task j (higher is better).

a) Artifacts produced by the LLM.: Given a natural-
language instruction and short robot profiles, the LLM out-
puts a JSON task list:

e id, description (subtask string), duration d;,
e dependencies (list of predecessors), and optional
constraints: location (for travel accounting).
A second prompt maps robot profiles to a scalar f;;,
forming a matrix F € [0, 1]"*™. In practice we use few-shot,
chain-of-thought style grading and min—-max normalization
across robots per task to reduce bias. When F' is unavailable,
we default to uniform scores.

B. Scheduling Back-end: MILP Formulation

Let R = {1,...,n} denote robots and 7' = {1,...,m}
tasks. Each task j has duration d; > 0 and precedence edges
ECTxT, (k,j) € E means k must finish before j starts.
Feasibility g;; € {0,1} encodes capabilities; fitness f;; €
[0,1] induces a linear cost ¢;; = ﬁ + 7 travel;; (set 7=0
if travel is unused). Pick M > ) jer d;- Decision variables:
z;; € {0,1} (assign j to 4), s; > 0 (start time), y;k € {0,1}
(on robot i, j before k), C; > 0 (robot completion), and
Crax > 0 (makespan).

min OszaX-‘rﬁZCi—i-)\ZZCijaﬁij (D
i€R i€ER JET
Prioritizes makespan («) with secondary load balance ((3)

and a soft preference for capability/fit and optional travel
cost ().

wmy=1  VjeT 2)
i€R

Tij < Gij Vi € R, Vj eT 3)

55 > sp +dg V(k,j) € E 4)

(2) assigns each task to exactly one robot; (3) enforces
capability feasibility; (4) respects all precedence edges.
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Fig. 4: Hardware trial: Cross-modal inspection. The environment included a heat pad under a traffic cone at point-of-interest
1 and a bucket of ice at point of interest 2. The robot team was asked to visually and thermally characterize both points
of interest with the additional constraint that only one robot could analyse a point of interest at a time. The robots have
disjoint capabilities where Spot-IR can only provide thermal analysis and Spot-RGB/VLM is the only robot that can provide
visual question answering. (a) Natural-language instruction. (b) Planner schedule with AND-dependencies (visual+thermal).
(c—f) robot QA responses (RGB/IR). (g—j) execution frames. The formal scheduler releases steps on dependency completion,

reducing idle time and handoff latency.

sjt+d; < sp+ M1 —yl) Vie R, Vj <k (5
+ M(2 — xij — zik)

if vi;=x=1 and y;-kzl, then j must finish before k on

robot i; otherwise the big-M terms relax the constraint.

sp+dp < sj—l—Myjk
+M(2_a7ij_xik)

Vi e R, Vj <k (6)

Symmetric branch—if x;j=x;,=1 and y; =0, then k must
finish before j on robot i; otherwise it relaxes. Together with
(5) this prevents overlap on the same robot.

Cc; > S +dj
- M1 —xij)

Vie R, VjeT 7

Robot completion time C; lower-bounds the finish time of
every task assigned to robot 1.

Cinax = 5, +d;  VjeT. (8)

Makespan Chyax lower-bounds the finish time of every task
(overall completion).

Anytime MILP and fallbacks. — FLEETrun CBC with a
wall-clock cap and a gap stop (e.g., timeLimit=120s,
gapRel=1%); on timeout, the incumbent plan is used. If no
incumbent exists, FLEETfalls back to an Auction allocator
(same I/0O schema). This ensures progress during evaluation
and enables quality/latency trade-offs.

C. Pluggable Allocators (Auction, MILP)

For scalability studies we swap the MILP with: Auction:
robots bid for ready tasks using costs c;;, iterating until e-
optimality; ties break by earliest finish time and robot ID.
Dependencies gate task readiness [7]. All allocators emit the
same schedule dictionary (agent ID, start, end, metadata),
which we visualize as a Gantt chart and push to the execution
layer.



D. Closed-loop Execution with Reasoning Agents

The global schedule specifies who does what and when.
Each robot executes its assigned free-form language subtasks
with ConceptAgent [27]: the LLM can call a small set of
verified tools (navigation, perception, manipulation), must
return JSON under a fixed schema, and logs status back to a
shared world model (task state, detections, poses). Triggers
for replanning include (i) task completion, (ii) delay beyond a
threshold, (iii) perception contradictions (e.g., VLM/IR mis-
match), or (iv) newly discovered obstacles. On replanning,
we re-score fitness only for impacted tasks and resolve with
the same allocator (MILP/Auction), warm-starting from the
current partial schedule to preserve stability. Prompt formats
are derived from PARTNR [1] decentralized baselines.

Implementation details. — We use fixed prompt templates
(few-shot for both decomposition and fitness scoring), nor-
malize f;; per task, and clamp durations to positive values.
For CBC we set presolve=true, enable cuts, and cap
threads to available cores. M is chosen as ) d;, and time
windows are omitted if absent. When locations are present
we include travel either in ¢;; (cost term) or by augmenting
d; with the preceding leg’s travel time; both variants are
supported by our code.

IV. RESULTS
A. Evaluation in Simulation (PARTNR)

We evaluate on PARTNR [1], illustrated in Figure 2, which
scores success on free-form, language-guided multi-robot
tasks. Following its taxonomy, we report three categories:
(i) constraint-free (subtasks can be completed in any order
by any agent), (ii) femporal (explicit/implicit precedence
constraints), and (iii) heterogeneous (capability-restricted
subtasks). PARTNR provides a verified evaluation function
per instruction (goal propositions and constraints), enabling
automatic scoring. We omit strictly spatial-relation tasks and
focus on categories most aligned with capability- and order-
aware scheduling.

a) Protocol and metrics: Unless noted, we measure
task success rate (fraction completed; higher is better; binary
variable). We evaluate 2- and 3-agent (when possible) teams.
Prompts, seeds, and full configuration are in the supplement.
We report macro-averages across PARTNR categories; all
methods share the same instruction sets and LLM back-ends.

B. Comparison to State-of-the-Art Planners (Two Agents)

In Table I, we compare FLEET against a decentralized
baseline from PARTNR and the centralized LLM planner
SMART-LLM. Scores are averaged over runs with both
gpt-4o0 and an open-weight gpt-oss—20b.

Findings. — (1) Against decentralized planning. FLEET
improves substantially over the PARTNR decentralized base-
line across all categories: +0.24 (constraint-free), +0.42 (het-
erogeneous), +0.27 (temporal), and +0.31 overall (0.59 vs.
0.28). This reflects the benefit of explicit precedence/resource
constraints and capability-aware assignment.

(2) Against SMART-LLM. FLEET is comparable with
SMART - LLM on constraint-free tasks (0.56 vs. 0.56) and

TABLE I: PARTNR-sim success rate (1) for two agents. Best
per column in bold.

Constraint Hetero-

Method Temporal Average

Free geneous
FLEET (Ours) 0.56 0.67 0.53 0.59
PARTNR [1] 0.32 0.25 0.26 0.28
SMART-LLM [22] 0.56 0.60 0.56 0.57

TABLE II: Ablations on FLEET. Success rate (7). Avg =
macro-average. Best per column in bold.

Constraint Hetero-

Method Ablations Temporal Average

Free geneous
[+MILP
+LLM fitness] 0.56 0.67 0.53 0.59
FLEET [+auction
+LLM fitness] 0.56 0.50 0.44 0.50
[+MILP] 0.41 0.27 0.49 0.39
[base] 0.32 0.25 0.26 0.28

temporal tasks (0.53 vs. 0.56), is stronger on heterogeneous
tasks (0.67 vs. 0.60, +0.07), yielding a higher overall average
(0.59 vs. 0.57). The heterogeneous gain is consistent with our
fitness-guided allocation.

A hybrid approach that pairs LLM-derived task graphs and
fitness with a formal scheduler yields competitive constraint-
free performance, stronger capability-coupled coordination,
and state-of-the-art average success with two agents.

C. Ablation Studies

We ablate two components of FLEET: the formal sched-
uler (MILP) and the LLM-based robot—task fitness. The
base variant uses uniform fitness with no formal optimizer;
FLEET (+MILP) adds the scheduler; FLEET (+MILP +
LLM fitness) adds capability-aware fitness on top of MILP.
Scores are macro-averaged across task categories.

Findings — (1) MILP mainly improves temporal struc-
ture. Adding MILP to the base raises femporal success
from 0.26 — 0.49 (4+0.23, ~ +88% rel.), consistent with
enforcing precedence. It also modestly helps constraint-free
tasks (0.32—0.41, 4-0.09). The auction assignment strategy
matched the performance of MILP for constraint free tasks,
but had lower performance than MILP for heterogeneous and
temporal tasks.

(2) LLM fitness is decisive for heterogeneous tasks.
With uniform fitness, MILP barely changes heterogeneous
performance (0.25 — 0.27). Injecting LLM-derived fitness
with the same MILP lifts it to 0.67 (4-0.40 over MILP; 4-0.42
over base), indicating that capability-aware scoring is the
primary driver of correct assignments.

(3) Components are complementary. The base averages
0.28; MILP alone reaches 0.39 (+0.11, +39% rel.), and
MILP+fitness reaches 0.59 (4+0.31, +111% rel.; +0.20 over
MILP). Constraint-free tasks also benefit from the full model
(0.32 — 0.56, +0.24), reflecting better load balance and
reduced idle from explicit scheduling guided by capability
fit. Formal scheduling and capability-aware fitness address



complementary failure modes—temporal feasibility vs. role
selection—and together yield the highest performance.

D. Hardware Trials

We tested FLEETusing two Boston Dynamic Spot robots
with complementary but disjoint sensing capabilities: Spot-
IR (thermal QA) and Spot-RGB/VLM (visual QA), both
with waypoint navigation and home. Each robot executes
locally (ConceptAgent [27]); FLEET computes the schedule.
Figure 4 illustrates a task with heterogeneous and temporal
constraints. In Cross-modal POIs, two points of interest
must be analyzed visually and thermally under a single-
server constraint (only one robot may analyze a POI at a
time). In Maneuver with implied dependencies, the team
advances in fixed segments with alternating motion. Figure
3 illustrates FLEETperforming the trial. Compared to the
PARTNR decentralized baseline, FLEET encodes precedence
and schedules sensing to avoid mid-field conflicts; empir-
ically this increases minimum inter-robot separation and
reduces handoff latency and makespan on multi-modal tasks,
while matching performance on leap-frog where structure is
simple.

V. CONCLUSIONS

We presented FLEET, a hybrid framework that turns
free-form language into optimized multi-robot schedules by
pairing an LLM front-end (task graph + capability-aware fit-
ness) with a formal back-end (MILP/Auction). The approach
enforces precedence, non-overlap constraints and operates
in an anytime mode for dependable progress. In simulation
(PARTNR), FLEET improves success over strong language-
model planners—especially on heterogeneous tasks—and ab-
lations show that formal scheduling and LLM-derived fitness
are complementary. Hardware trials with two heterogeneous
Spots demonstrate practical benefits: deconflicted execution
and shorter makespan on cross-modal inspections, while
matching baselines on simpler maneuvers.
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