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Figure 1. This diagram illustrates PromptGAR’s performance and key capabilities. Compared to existing methods, PromptGAR achieves
competitive group activity recognition accuracy and superior input flexibility without the need for retraining, including: (a) flexible visual
prompt inputs, (b) flexible instance counts, and (c) flexible frame sampling.

Abstract

We present PromptGAR, a novel framework for Group Ac-
tivity Recognition (GAR) that offering both input flexibil-
ity and high recognition accuracy. The existing approaches
suffer from limited real-world applicability due to their re-
liance on full prompt annotations, fixed number of frames
and instances, and the lack of actor consistency. To bridge
the gap, we proposed PromptGAR, which is the first GAR
model to provide input flexibility across prompts, frames,
and instances without the need for retraining. We leverage
diverse visual prompts—Ilike bounding boxes, skeletal key-
points, and instance identities—by unifying them as point
prompts. A recognition decoder then cross-updates class
and prompt tokens for enhanced performance. To ensure
actor consistency for extended activity durations, we also
introduce a relative instance attention mechanism that di-
rectly encodes instance identities. Comprehensive evalu-
ations demonstrate that PromptGAR achieves competitive
performances both on full prompts and partial prompt in-
puts, establishing its effectiveness on input flexibility and

generalization ability for real-world applications.

1. Introduction

Group Activity Recognition (GAR) [7] is fundamentally
important for video and event understanding, and it is
widely used in areas such as video analytics, human com-
puter interaction, and security systems. GAR processes
videos and annotations including bounding boxes, skele-
tons, ball trajectories, and optical flows to determine the
group activity label. Building on prior research [13, 16, 24,
26, 51], we aim to not only enhance group activity recogni-
tion accuracy but also to create a more flexible architecture
handling diverse prompt, frame, and instance inputs.
Although numerous models have been proposed, high-
performance and flexible group activity recognition contin-
ues to be challenging due to the following difficulties:
Requirement for Full Prompts. Current group ac-
tivity recognizers [13, 16, 24] rely on full annotations to
achieve strong performance at test time. It is widely ac-
knowledged that obtaining accurate annotations is difficult.
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Figure 2. PromptGAR Architecture. A sequence of frames [ is processed by the video encoder, yielding RGB features F; and GAR
class token Xy4-. Prompts, such as bounding boxes and skeletal keypoints, are transformed to prompt tokens F;, by the prompt encoder.
These tokens, along with instance identities, are then fed into the recognition decoder to get group activity prediction Y44,

Even though using state-of-the-art object detectors [35, 52],
trackers [34, 44], and pose estimators [14, 40], the lower
quality annotations still exist, such as missed detections,
redundant boxes with low confidence scores, player ID
switching, player ID reassignment upon reappearance, and
so on. In real-world scenarios, manually correcting these
annotations at test time is often impractical. Instead of be-
ing forced to use potentially inaccurate prompts during test
time, users in real-world scenarios want the flexibility to
choose from full, partial, or no prompts. However, current
GAR architectures [13, 16, 24, 26, 30, 32, 45, 51] either do
not support partial prompts, or they demand retraining to
perform reasonably. So we design our model for the input
flexibility: it is trained with full prompts like prior methods,
but it delivers competitive results with full prompts and still
performs quite well with fewer or no prompts at test time,
without retraining.

Requirement for Fixed Frames and Instances. Most
current GAR methods [13, 16, 24] are limited to a fixed
number of frames and instances as input. Those rigid re-
quirements lead to significant performance degradation in
real-world scenarios: (1) As seen in Fig. 3-a, offense or
defense relies on who gets the ball at the end. Such key mo-
ment can be anywhere in the video, so previous fixed-frame
models may miss it depending on how the frames are sam-
pled from a long sequence. (2) Similarly, in Fig. 3-b and c,
real-world data often contains missing actors in annotations
or false positive detections of spectators as players. Prior
fixed-instances models requires a fixed input shape, causing
runtime errors or requiring arbitrary padding/truncation that
degrades performance. In contrast, our model is designed
to accept a flexible number of frames and instances, and it
achieves reliable performance without requiring retraining.

Lacking Actor Consistency. Recent GAR approaches
[26, 49, 51] rely on a fixed player order. Their performance
degrades when this order changes. Even though player or-
der in the testing set of either Volleyball [18] or NBA [42]
is not supposed to be known, that order is still fixed for
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Figure 3. Necessity of flexible frames: (a) offense or defense relies
on which team gets the ball at the end, and similar key moments
can be anywhere in the video. Necessity of flexible instances: (b)
false-positives and (c) false-negatives make player counts unfixed.

both validation and testing in these methods. Consequently,
among all epochs, they pick the checkpoint with the best
performance under this specific player order. However, in
real-world scenarios, such player order is entirely unknown.
A robust GAR model, therefore, should give identical per-
formance regardless of the input player order. In our work,
we address this by introducing a relative instance attention
mechanism that only encodes whether two players are the
same or not. This design ensures that player order does not
affect our model’s performance at all.

Considering the above challenges and motivations, we
present PromptGAR, a transformer-based group activ-
ity recognition framework that leverages diverse visual
prompts (i.e., bounding boxes, skeletal keypoints, instance
identities) to achieve high group activity recognition accu-
racy and input flexibility. (a) Flexible Prompts. It adapts
to varying prompt availability, namely full prompts, partial
prompts, and no prompts. When comprehensive annota-
tions are present, the full prompt inputs would maximize
performance. If only simpler annotations like bounding
boxes and instance identities are available, our model still
gives reliable results. Even with no annotations, it can also
provide reasonable results using only the raw video. This



adaptability makes it suitable for diverse real-world scenar-
ios where annotation quality varies. (b) Flexible Frames.
The method has temporal flexibility in accepting videos of
varying lengths and frame rates. Furthermore, it effectively
recognizes group activities regardless of their temporal lo-
cation within the video, accommodating both instantaneous
actions and sequential events. (c) Flexible Instances. It
is designed to handle varying numbers of actors within a
scene. Therefore in an ideal scenario, our model can lever-
age detailed annotations of all individuals for enhanced ac-
curacy. On the other hand, it can also maintain robust per-
formance even when there are missing annotations for cer-
tain actors. (d) Without Retraining. After training with
full prompts, PromptGAR automatically gains the flexibil-
ity for input prompts, frames, and instances during infer-
ence. This significantly enhances its practicality and broad-
ens its applicability to diverse scenarios.

Our implementation is inspired by the Segment Any-
thing [21]. We unify bounding boxes and skeletal key-
points as point prompts and employing a two-way decoder
for cross-updating class and prompt tokens. Firstly, the in-
put flexibility is implemented through several design fea-
tures: MViTv2’s relative positional embedding for variable
length of RGB frames, depth-wise prompt pooling to ac-
commodate flexible temporal and prompt dimensions, and a
robust head that maintains classification stability even when
no prompts are available during inference. Secondly, to ef-
fectively acquire actor consistency, we introduce relative in-
stance attention, which directly encodes instance IDs. The
encoding ensures that the output will remain invariant to in-
stance ID transitions.

Based on the above technical contributions, we evalu-
ate our model under Volleyball [18] and NBA [42] datasets,
PromptGAR produces competitive results compared to
state-of-the-art GAR methods, showcasing its strong recog-
nition capabilities. Additionally, we demonstrated its flexi-
bility to handle varying prompt inputs, frame sampling, and
instance counts while maintaining robust performance with-
out retraining. Our main contributions are as follows.

(a) An effective group activity recognition architecture
that achieves input flexibility across prompts, frames, and
instances without retraining.

(b) A relative instance attention module for encoding in-
stance identities and ensuring actor consistency.

2. Related Work
2.1. Group Activity Recognition

GAR [7] has attracted attention due to its massive success
in a variety of real-world applications. Earlier techniques
relied heavily on handcrafted features [5-8, 15, 22, 28] or
AND-OR graphs [1, 2, 33]. Recently, methods based on
neural network architectures have been widely studied be-

cause of their ability to effectively extract features and fuse
various visual prompts.

Various Prompts for GAR. (a) RGB frames and bound-
ing boxes. Existing work either directly crops people from
scenes [41] or applies ROIAlign [17] to represent actors
from extracted feature maps [24, 32, 45]. (b) Skeletons.
Several works [11, 26, 37, 51] explore using human skele-
ton joints as inputs to avoid substantial computational re-
sources and discrepancies in background and camera set-
tings in video-based approaches. (c) Optical flows. Neigh-
boring RGB frames can produce optical flow images [47].
These flows are then concatenated with RGB frames to cre-
ate dense inputs to introduce pixel-wise motion informa-
tion across the temporal dimension [16, 24, 32]. A similar
idea is also applied in Composer [51] for skeletal informa-
tion by computing the temporal difference of coordinates
in two consecutive frames. MP-GCN [26] calculated joint
motions and bone motions as extra sparse inputs. (d) Balls.
Group labels in the NBA dataset [42], such as ‘2p-succ’
and ‘3p-succ’, are closely related to ball positions; there-
fore, Composer [51] and MP-GCN [26] treat balls as addi-
tional inputs. However, it is difficult to leverage these spe-
cific model designs for general scenarios such as non-sports
activity recognition. (e) Tracked instance identities. Recent
approaches [24, 45] use optical flows to describe only short-
term motions without explicitly encoding instance identities
to preserve actor consistency. We introduce a relative in-
stance identities encoding mechanism to handle this long-
neglected prompt.

Input Flexibility for GAR. Due to the model design
choices, recent works [13, 16, 24, 26, 51] have less in-
put flexibility in group activity recognition. (a) Flexi-
ble prompts. A common limitation among GAR meth-
ods [13, 16, 24] that process RGB frames and bounding
boxes is their dependence on ROIAlign [17] for actor fea-
ture extraction, making them incompatible with scenarios
lacking bounding box prompts. Likewise, GroupFormer’s
fixed input channel setting [24], achieved through concate-
nating RGB and skeleton features, prevents its use when
skeleton data is unavailable. (b) Flexible frames. Dual-
Al [16] demonstrates some flexibility by applying differ-
ent frame sampling strategies during training and testing,
such as 3 frames for training and 9 or 20 frames for test-
ing on the Volleyball [18] and NBA [42] datasets, respec-
tively. However, these frame counts remain significantly
lower than the total available frames (41 for Volleyball, 72
for NBA) in each clip. This restricted frame sampling flex-
ibility limits its potential for achieving higher performance.
(c) Flexible instances. Composer [51] relies on normalizing
joint coordinates with statistics derived from the complete
clip. However, missing instances significantly alter these
statistics, shifting the mean and standard deviation far from
their expected distribution. Notably, our PromptGAR main-
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Figure 4. Prompt Encoder. (a) Bounding boxes are represented by 3
points (upper-left, center, lower-right). (b) Skeletal keypoints consist of 17
points. (c) Positional encoding captures both spatial and temporal coor-
diates. (d) Point types are distinguished using learnable embeddings. (e)
Depth-wise prompts pooling reduces temporal and type dimensions to 1,
then up-projects to the number of pooled prompts O.
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Figure 5. Recognition Decoder. The decoder processes (a) RGB fea-
tures Fy with positional embeddings and (b) the GAR class token Xgq
and prompt tokens Fp,. (c) The Two-Way Transformer performs cross-
updating between these features. (d) Relative instance self-attention, using
instance identities, ensures actor consistency. (e) The GAR head takes up-
dated GAR class token X g4 and average of updated prompt tokens Fj, to
predict the group activity label Y g

tains high performance across inputs with flexible prompts,
frames, and instances without the needs for retraining.

3. Method

As shown in Fig. 2, PromptGAR is an end-to-end prompt-
based framework for group activity recognition. It takes a
sequence of frames and corresponding prompts as inputs
and outputs the group activity label. In the following sub-
section, we first introduce how to encode videos and visual
prompts in §3.1. Then we illustrate how to fuse various vi-
sual prompts and spatial-temporal information in §3.2.

3.1. Visual Inputs Encoding

PromptGAR supports three kinds of inputs: input frames I,
bounding box prompts Fy,, and skeleton prompts Fy;.

Video Encoding. While existing works [16, 45] have
shown promises in their power to model RGB features, they
focus on images rather than videos. Other studies [24, 32]
chose 13D [4], but they require optical flows as extra dense
guidance. To address those issues, the sequence of frames
I is processed through MViTv2 [25], to extract multi-scale
feature tokens F; and the GAR class token Xgq..

Point Prompts. As shown in Fig. 4, all of the aforemen-
tioned prompts are formulated as point prompts: (a) Bound-
ing boxes are formatted in three points, including upper-
left, center, and lower-right points, similarly as in [21]. (b)
Human skeletons follow the definition of COCO keypoints
[27]. In general, one point is uniquely described by five
attributes:

(x,y,t,p,ID)

where x,y, t are the positions along the width, height, and
temporal axes, p is the point type, and ID denotes the in-
stance identity that the point belongs to. We encode these
attributes in the following ways. Firstly, while the original
Fourier embedding [36] only maps the spatial coordinate
(z,y) to the corresponding feature dimensions, we extend
its capability to incorporate temporal location .

y(v) = [cos (27TB(2V - 1)>,sin (277B(2v - 1))}T

where v := [z,y,t]7 € [0,1]? is the spatial-temporal co-
ordinate, and B € RLP/2/%3 is sampled from a Gaussian
distribution N'(0,1). The same positional encoding is also
applied to RGB features F;. Secondly, we employ learned
embeddings for each prompt type p, similar to [21]. Thirdly,
ID is encoded by relative embeddings, with details in § 3.2.

Depth-wise Prompts Pooling. As described in Fig. 4-
(e), after obtaining prompt features Ky, and Fy,;, we em-
ploy a mean pooling operator M and a MLP projector P.
They perform along temporal and type dimensions.

F,=(Po M)([Fpoz; kat])

where F,, € RPXNXO R, € RPOXNX(TX3) and Fy,,, €
RP*NX(Tx1T) ~ And D, N, T,O are the embedding size,
number of instances, number of frames, and number of
pooled prompts, respectively.

The pooling mechanism reduces the computational com-
plexity and avoids out-of-memory (OOM) in the recogni-
tion decoder. The depth-wise mechanism, namely the mean
operator M that reduces channels from 7" x 20 to 1, is
specifically designed for input flexibility across temporal
and prompt dimensions. Consequently, a model trained
on T3 frames can perform inference on 75 frames (T #
T, ) without requiring architectural modifications or weight
changes. Similarly, the model is able to infer with either
bounding box prompts alone or skeleton prompts alone,
even when trained on both prompts. Note that the instance
dimension N is not pooled and is required by relative iden-
tities encoding in §3.2.

3.2. Cross-Visual Decoding

Leveraging the image embedding F;, the prompt features
F, and associated instance identities, PromptGAR takes the
GAR class token X, to decode the GAR logits Y g4,
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Figure 6. The Relative Instance Attention mechanism that incor-
porating a constant scale e and relative instance identity embed-
dings Ringi(s),inst(5) in the attention block.

Two-Way Transformer. For simplicity, we refer to
these embeddings (not including the image embedding) col-
lectively as “tokens”.

images = F;, tokens = [Xgor;Fp)

F;, [)A(gar; ﬁp] = Two-Way(images, tokens)

Our two-way transformer is shown in Fig. 5-(c), inspired by
[21], each layer performs 4 steps: (1) relative instance self-
attention on tokens, (2) cross-attention from tokens to the
image embedding, (3) an MLP updates each token, and (4)
cross-attention from the image embedding to tokens. The
next layer takes the updated tokens and the updated image
embedding from the previous layer. Input flexibility is well-
achieved through the attention mechanism, which naturally
handles inputs of different lengths. This allows our two-way
transformer to process varying numbers of frames, types, or
instances at inference time, regardless of those in training.

Relative Instance Attention. Existing research has
demonstrated potential in modeling short-term temporal
consistency via either optical flows [16, 24, 32] or joint mo-
tions [26, 51]. As these methods primarily focus on cap-
turing motion between immediate time steps, the long-term
consistency in the movement of objects or individuals is not
well handled. Also, the use of absolute instance ID encod-
ing to ensure consistency violates the principle of shift in-
variance [23]. Namely, the interaction between two prompts
becomes dependent on their arbitrary instance /Ds, even if
they refer to the same underlying object or entity. Inspired
by relative positional embedding, we introduce the relative
instance identity embedding to address this issue by focus-
ing on whether two tokens belong to the same instance.

As illustrated in Fig. 6, we encode the relative instance
information between the two input elements, ¢ and j, into
embedding {Rins(i), mst(j) }i; € R, where inst(i) and

inst(j) denote the instance ID of element ¢ and j. Notice
that the GAR class token Xy, is not included in E("e!).

Attn(Qy K, V) = SOftmaX((QKT)/\/E Te- E(rel))‘/’

(rel)
where Ei’je = Qz : {-Rinst(i)7 inst(j)}ivj

Here, the number of token pairs belonging to different
instances significantly outnumbers those belonging to the
same instance. To address the imbalance problem, we as-
sign a learnable embedding R to pairs of tokens within the
same instance, while setting the embedding to 0 for pairs
from different instances.

0, inst(é) # inst(j)
R, inst(:) = inst(j)

{Rinst(i), insl(j)}i7j = {

Due to the sparsity of E("°), the scaling factor € is a

constant determined by experiments, with details in §4.5.
Note that relative instance embeddings cannot be applied to
cross-attention between image embeddings and tokens, as
image embeddings lack associated instance ID information.

GAR Head. In contrast to most approaches [10, 21,
25, 43], where [class] tokens are directly fed to MLP
layers for logits prediction, we observe a unique challenge
in GAR. While traditional methods align different prompts
with distinct ground truth labels [21], in GAR, various
prompts correspond to the same ground truth label. As il-
lustrated in Fig. 5-(e), to encourage the network to utilize
the information provided by the prompts, we add the class
tokens with the averaged prompt features. Then a linear
projection is employed to generate final logits for predic-
tion.

Y 4o = Linear ()A(gw + Mean(f p))

where Mean(fp) € RP means taking average over T' x O.
Our approach is also carefully designed to ensure input flex-
ibility, even when the prompts present during the training
time are absent during the inference time. During back-
propagation, the gradients of X,,, and Mean(F),) are iden-
tical, indicating they are optimized in the same direction
and towards the same representation. Consequently, a well-
trained model can function effectively using either X, or

~

Mean(F),) independently.

4. Experiments

4.1. Experimental Setup

Volleyball Dataset [18] contains 3,493 clips for training
and 1,337 clips for testing. Each clip has 41 frames and
is labeled with one of eight group activities. Bounding box
and skeleton annotations, provided separately by [18, 51],
are available only for the central 16 frames of each clip.



Prompt Types Topl Mean
Method RGB Bbox Il)(ptyI;low Ball| At Acc
ARG [38] v v 90.7 91.0
HiGCIN [41] v v 914 920
DIN [45] v v 92.7* 92.8*
POGARS [37] v v | 939 -
Composer [51] v v [93.6° -
SkeleTR [11] v 94.4 -
MP-GCN [26] v v |95.0" 95.0f
Bi-Causal [49] v v |95.8% -
CRM [3] v (%4 v 93.0 -
ActorFormer [13] v Vv Vv 94.4 -
GIRN [31] v v v vV 940 -
SACREF [32] v v v v 95.0 -
GroupFormer [24] | ¢/ Vv v Vv 95.7 -
Dual-AI [16] v v v 954 -
KRGFormer [30] v vV Vv 946 94.8
PromptGAR v v Vv 96.0 96.3

Table 1. Quantitative Comparisons in Volleyball Dataset. (—)
denotes not reported in the paper, (x) reproduced from released
codes, (}) reproduced with keypoint-ball results (late-fusion parts
un-released), and unmarked other methods are not open-sourced.

Prompt Types Topl Mean
Method RGB Bbox Kpt Flow Ball| Acc Acc
ARG [38] v v 59.0 56.8
ActorFormer [13]| ¢/ 4 (4 47.1 41.5
SAM [42] 4 4 49.1 475
DIN [45] v v 61.6 56.0
Dual-Al [16] v v (4 58.1 50.2
KRGFormer [30] | ¢/ 4 724  67.1
MP-GCN [26] v v [75.8T 7207
DFWSGAR [20] | ¢ 75.8 712
Flaming-Net [29] | ¢/ v 79.1 76.0
PromptGAR v v Vv 80.6 76.9

Table 2. Quantitative Comparisons in NBA Dataset. (1) repro-
duced with keypoint-ball results (late-fusion and multi-ensemble
parts un-released), and unmarked methods are not open-sourced.

Consistent with prior works, we limit our analysis for cen-
tral 16 frames to avoid potential interference from addi-
tional group activities present in the remaining half of clips.

NBA Dataset [42] includes 7,624 training clips and
1,548 testing clips. Each clip includes 72 frames and is cate-
gorized into nine group activity labels. Due to its increasing
complexity, the NBA dataset demands special design and
processing compared to the Volleyball dataset [18]. Unlike
Volleyball [18], we use all 72 frames in NBA because key
event frames are not centrally located. Also, NBA activities
are much longer than Volleyball’s. For example, ‘3p-fail-
offensive’ requires recognizing shooter location, ball trajec-
tory, and possession.

Implementation details. We utilize the MViTv2-Base

[25] video encoder with a 224 x 224 input resolution. For
the Volleyball dataset [ 18], training and testing use the cen-
ter 16 frames. The NBA dataset [42] is trained on 56 uni-
formly sampled frames and tested on all 72. The recog-
nition decoder consists of an eight-layer stack of two-way
transformers. All models are trained on 4 A100-80GB
GPUs, where the Volleyball dataset use a batch size of 64,
and the NBA dataset employ 24. Training runs for 200
epochs, using an AdamW optimizer and a Cosine Anneal-
ing learning rate scheduler. The initial learning rates are
2 x 10~* for Volleyball and 7.5 x 1075 for NBA.

4.2. Group Activity Recognition

Volleyball Dataset. In Tab. [, we compare our method
to the group activity recognition methods that rely on: (a)
RGB frames, like DIN [45], which suffers from limited
performance; (b) skeletons and ball trajectories, like Com-
poser [51] and MP-GCN [26], which requires ball trajec-
tories as extra inputs; (c) combined visual prompts, like
GroupFormer [24] and Dual-AI [16], which takes compu-
tationally expensive optical flows as inputs and thus sen-
sitive to input frame rates. In contrast, our PromptGAR,
without the drawbacks of those other visual prompt inputs,
still produces 96.0% topl accuracy and 96.3% mean accu-
racy, achieving considerable improvements across different
baseline models. Also, ACCG [39] can not be evaluated due
to unreleased codes.

NBA Dataset. Tab. 2 shows that PromptGAR gets com-
petitive performance over previous methods on the chal-
lenging NBA dataset [42]. Prior approaches often face
limitations. Older models like SAM [42] and Dual-Al
[16] accept only raw videos and bounding boxes, which
restricts their performance; Other methods, such as MP-
GCN [26], require specialized inputs like ball trajectories,
thereby limiting their applicability to broader, non-sports
GAR tasks. Additionally, weakly-supervised techniques
like DFWSGAR [20] and Flaming-Net [29] introduce con-
siderable training complexity. In contrast, our PromptGAR,
without these drawbacks, still produces 80.6% topl accu-
racy and 76.9% mean accuracy, reflecting substantial ad-
vancements over various baseline models.

4.3. Input Flexibility

Flexible Prompts. Tab. 3 demonstrates PromptGAR’s re-
silience to reduced prompt information. Using only skele-
ton data, it loses a negligible 0.3% in accuracy. When re-
lying solely on bounding boxes, it achieves the same ac-
curacy as GroupFormer [24], but without retraining. Even
with only RGB input, the model’s accuracy remains rea-
sonable, only 2.1% lower than with full prompts. This
shows PromptGAR’s robustness to maintain high perfor-
mance even with significantly reduced prompt inputs with-
out retraining.



Prompt Types . | Topl Mean

Method RGB Bbox Ky;)t Flow | RE1| A6 Ace
v v v 7/ 957 -
GroupFormer [24]| v/ v v v 949 -
v v 94.1 -

v v 7/ 96.0 96.3

v v 95.7 95.8

PromptGAR VR X o4l 943

v 93.9 944

Table 3. Flexible Prompts. In the Volleyball dataset, we achieve
remarkable performance under diverse prompts without retraining.

Train Test . | Topl Mean

Method T Sampling| T Sampling Retrain| ) e Ace
18 stride 1 |18 stride 1 73.3 68.4

MP-GEN [26] 72 stride 1 |72 stride 1 v 75.8 72.0
36 stride 2 754 719

. 56 stride 1 75.0 71.0

PromptGAR |56 uniform 64 stride 1 X 78.4 741
72  stride 1 80.6 76.9

Table 4. Flexible Frames. For the NBA dataset, frames are all
sampled at the center of each video clip. PromptGAR’s validation
process also uses 7' = 72 to select the optimal checkpoint.

Method # Instances | Re-train | Topl Acc Mean Acc
12 96.0 96.3
10 954 95.6
PromptGAR 5 X 94.5 94.8
3 94.3 94.6

Table 5. Flexible Instances. In the Volleyball dataset, instances
are randomly deleted, and results are averaged over three trials.

Flexible Frames. Tab. 4 exhibits PromptGAR’s adapt-
ability to various frame sampling configurations. Although
trained on 56 frames with the NBA dataset, it can effec-
tively handle both shorter and longer sequences at test time.
Specifically, it achieves 75.4% accuracy when tested with
36 frames (stride 2), nearly matching MP-GCN’s perfor-
mance, which needs to be trained and tested on the full 72
frames specifically. Moreoever, PromptGAR also outper-
forms MP-GCN when tested on all 72 frames, even though
MP-GCN is optimized for this exact frame count. Further-
more, the effective rollout length during testing is crucial.
When testing with 56 frames and a stride of 1, we see a 0.4%
accuracy decrease compared to 36 frames with a stride of 2,
due to the shorter rollout length (56 vs. 72). Those results
demonstrate PromptGAR’s robust ability to handle diverse
frame inputs without the need for retraining, a clear advan-
tage over methods requiring retraining.

Flexible Instances. Tab. 5 showcases that PromptGAR
can maintain high performance even when tested with fewer

instances than it was trained on, without requiring retrain-
ing. To ensure a fair comparison, instances were randomly
selected, and results were averaged over three experiments.
Reducing from 12 instances to 10 results in only a 0.6% ac-
curacy drop, and even when reduced to just 3 instances, the
drop is still manageable at 1.7%. This highlights Prompt-
GAR’s ability to function with reduced input, without the
needs for retraining.

4.4. Actor Consistency

Actor Order Invariance. Prompt inputs for the testing
dataset are formatted as a tensor of shape (N, T, M, J,C),
representing the number of videos, frames, actors, point
types, and coordinates, respectively. Bounding boxes and
skeletal keypoints belonging to the same instance ID share
the same index along the M (actor) axis. The actor order
along this M axis is usually fixed in conventional eval-
uations, but we introduce a rigorous test: we randomly
shuffle the M axis and evaluate the same model. This
procedure is repeated five times, and the averaged perfor-
mance is presented in Tab. 6. Our results demonstrate
that after shuffling, MP-GCN [26] shows a slight perfor-
mance degradation, but our model maintains identical per-
formance numbers. This is because current GAR methods
[13, 16, 24, 26, 51] fix that order for both validation and
testing, choosing the best checkpoint based on performance
with that specific player order. In contrast, our model incor-
porates a novel relative instance attention mechanism that
encodes only whether two actors are the same or not. This
design ensures our model remains unaffected by actor order
in real-world scenarios, thereby enhancing its robustness.
Necessity of Instance Identities. As shown in Tab. 7,
there is a performance drop without instance identities. This
is because, without instance identities, the model struggles
to maintain actor consistency and reliably associate indi-

Shuffle Input . Topl  Mean

Method Actor Order | RETAM | Ace  Acc
% 758 720

MP-GCN [26] v * |7 712
% 806 769

PromptGAR v X | 806 769

Table 6. Actor Order Invariance. For NBA dataset, input actor
order is randomly shuffled, and results are averaged over five trials.

Relative Instance . | Topl Mean
Method Identity Embeddings Re-train Acc  Acc
p (GAR v % 96.0 96.3
romp X 938 94.1

Table 7. Necessity of Instance Identities. In Volleyball dataset,
relative instance identity embeddings are included or omitted, us-
ing prompts from bounding boxes, skeletons, and RGB videos.



Method Re-train Topl Acc Mean Acc
PromptGAR v 95.8 96.0
wo inst IDs v 95.4 95.6
wo prompt tokens in head v 95.1 95.4
no prompts v 94.3 94.7

Table 8. Effectiveness of Novel Modules. Experiments are con-
ducted using smaller models with O = 16 in Volleyball. Ablation
studies included: ‘wo inst IDs’, where relative instance attention is
replaced with regular self-attention; ‘wo prompt tokens in head’,
where only the GAR class token Xy, is used for the GAR head;
and ‘no prompts’, where the recognition decoder receives only the
GAR class token X, and RGB features F as inputs.

O | Memory | Topl Acc Mean Acc € | Topl Acc Mean Acc
16 | 40 GB 95.8 96.0 0 95.4 95.6
48| 72GB | 96.0 96.3 5/ 956 95.9
56| OOM - - 10| 958 96.0

Table 9. # of Pooled Prompts O. Table 10. Relative Instance Scale .

vidual features across different frames. This also proves the
necessity of our instance identities.

4.5. Ablation Studies

Tab. 8 details the impact of our novel modules on per-
formance, starting with a baseline of 96.0% top-1 accu-
racy on the Volleyball dataset. (a) Relative instance atten-
tion. Eliminating instance /Ds during training and testing
resulted in a 0.6% drop in top-1 accuracy. This confirms
that instance IDs are vital for encoding long-term consis-
tency, enhancing performance. Furthermore, relative in-
stance attention also accelerated training convergence. (b)
Prompt tokens in head. Removing prompt tokens F,, from

the head, leaving only the GAR class token X,,,., led to a
0.3% accuracy decrease. This highlights the necessity of
explicitly incorporating prompt tokens. Without them, the
model struggles to integrate diverse visual prompt features,
as the GAR class token alone sufficiently captures RGB in-
formation. (c) No prompts. Disabling the entire prompt
encoder, using only the GAR class token X, as input for
the recognition decoder and the head, further reduced accu-
racy by 0.8%. This underscores the contribution of visual
prompt inputs in PromptGAR. Crucially, even without any
prompts during training and testing, our model still com-
pares favorably with other prompt-based baseline methods.
Specifically, it achieves a 1.6% higher accuracy than DIN,
which utilizes both RGB frames and bounding boxes, and a
0.7% higher accuracy than Composer, which uses skeletons
and ball trajectories as additional information. This demon-
strates the superior ability of our MViTv2 architecture to
process spatial-temporal information within only the RGB
features compared to other backbones that process the video

frame-by-frame separately.

Number of Pooled Prompts. Tab. 9 explores the
impact of the number of pooled prompt channels (O) on
performance. The prompt encoder’s output has the shape
D x N x O, where D, N, O are the feature dimension, the
number of instances, and the pooled prompt channels after
pooling along temporal and prompt type dimensions, repec-
tively. A smaller O value reduces the representativeness and
expressiveness of each actor’s key information. As shown
in the table, increasing O from 16 to 48 improves topl ac-
curacy by 0.2%. However, this increase quadratically raises
the computational cost and CUDA memory usage of the
subsequent recognition decoder module. Specifically, the
CUDA memory usage for O = 48 is 32 GB higher than for
O = 16. Further increasing O to 56 would exceed the 80
GB limit of an A100 GPU’s CUDA memory, resulting in
an out-of-memory error. Therefore, while a higher O value
improves performance, a balance must be struck to avoid
excessive computational demands and memory limitations.

Relative Instance Scale. Tab. 10 details the process
of determining the optimal relative instance scale, denoted
as e. This value serves as a coefficient for the relative in-
stance weights, which are added to the standard attention
weights. Due to the inherent sparsity of the relative in-
stance weight matrix E (red) | a small € value would diminish
the impact of instance I/Ds during training. Conversely, an
excessively large € would overpower the standard attention
weights, hindering the GAR class token’s ability to learn
effectively from the prompt tokens. The table reveals that
setting € to 10 yields a 0.4% improvement in top-1 accuracy
compared to setting it to 0 (effectively disabling relative in-
stance attention) and a 0.2% improvement compared to set-
ting it to 5. Therefore, we selected 10 as the final € value.
Notice that these experiments are conducted with a pooled
prompt channel count (O) of 16.

5. Limitations

Despite its competitive GAR accuracy and input flexibility,
PromptGAR faces limitations with input resolution. The
input resolution is restricted to 224 x 224, which is signifi-
cantly lower than 1080 x 720 in other methods [16, 24, 45].

6. Conclusion

In this work, we present PromptGAR, a novel framework
that addresses the limitations of current Group Activity
Recognition (GAR) approaches by leveraging diverse vi-
sual prompts to achieve both input flexibility and high
recognition accuracy. Extensive experiments show that
PromptGAR allows the input flexibility across prompts,
frames, and instances without the need for retraining. Fur-
thermore, we introduce a novel relative instance attention
mechanism that directly encodes instance identities, ensur-



ing actor consistency. Extensive evaluation validates the ef-
fectiveness and applicability of our model.
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Method Prompt Types I;Ifad Inpllts Re-train | Topl Mean
RGB Bbox Kpt InstID| Xgar Fp
v v v/ v 4 96.0 96.3
v v o/ v 4 95.7 95.8
oo/ v v v 94.1 943
v v v/ v 95.8 96.0
v v o/ v 95.5 95.7
PromptGAR| | v X 1940 942
v v 939 944
v v v/ v 952 95.6
v v o/ 4 952 95.6
o/ v v 934 94.0
Table 11. Ablation on Head Input Tokens.
Method Train Test Topl Mean
RGB Bbox Kpt InstID|RGB Bbox Kpt InstID| Acc Acc
v v v v/ 9.0 96.3
LTy /v |957 958
PromptGAR| o|lv o v v |954 958
v v 943 94.7

Table 12. Low Reliance on Skeletons.

1. More on Implementation Details

Data Augmentations. Following MViTV2 in action recog-
nition [25], we apply a comprehensive set of augmentations
for group activity recognition (GAR): Random Augment
[9], Random Resized Crop, Flip, Random Erasing [50],
CutMix [46], and MixUp [48].

Volleyball Dataset [18]. Since Volleyball only contains
annotations with central 16 frames, we replace the depth-
wise prompt pooling with a single MLP layer projecting
channels from 7" x 20 to the number of pooled prompts O.

NBA Dataset [42]. We regenerated annotations due to
inaccuracies in SAM [42] and MP-GCN [26], such as back-
ground audience false positives, player ID switching, and
ID reassignment upon reappearance. We used MOTIP [12]
for robust player tracking, optimized for sports data, and
RTMPose [19] for accurate skeleton generation, handling
occlusions effectively.

2. Additional Ablation Studies

Head Inputs. Tab. 11 indicates demonstrates the signifi-
cance of prompt token inputs within the head, even when
dealing with diverse visual prompts. We compared perfor-
mance using a model trained on full prompts, varying the
head inputs during testing. Under full prompt inputs, us-

ing only the GAR class token )A(gmn as the head input re-
sulted in a minor 0.2% performance drop, while using only
the prompt tokens F,, led to a 0.8% drop. This shows that
both inputs are crucial for PromptGAR’s high performance.
Even with reduced prompt inputs, both X, only and F),
only still yielded reasonable results. Notably, when using
only prompt tokens F,,, the performance of full prompt in-
puts was similar to the one with skeleton-only inputs. This
suggests that when RGB features don’t directly influence
the final prediction, bounding box information is effectively
captured within the skeleton data. In summary, this table
showcases the flexibility of head inputs across various vi-
sual prompts and underscores the importance of both the
RGB feature representation Xy, and the prompt feature
representation ﬁp for optimal performance.

Low Reliance on Skeletons. Tab. 12, our model has
competitive performance even when trained without skele-
tal data. This outcome indicates that our model does not
heavily rely on skeletal information.

3. Analysis

Quantitative Results. Fig. 7 - 8 shows the confusion ma-
trix of Volleyball and NBA, respectively. (a) For Volleyball,
while PromptGAR demonstrates high accuracy on the Vol-
leyball dataset, a common misclassification occurs where
‘right-set’ is mistaken for ‘right-pass’. This error is at-
tributed to the inherent similarity in player actions and po-
sitions, echoing findings in previous research [51]. (b) For
NBA, errors highlight the challenge of distinguishing be-
tween highly similar actions. Specifically, differentiating
‘offensive’ and ‘defensive’ requires nuanced visual analysis
of player uniform differences and rebound outcomes. Simi-
larly, distinguishing ‘2p-fail’ from ‘2p-layup-fail’ demands
attention to shooting position and posture near the rim.
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