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Abstract 

A proposal for a unified theory of learned trust is presented. A 
number of limitations of a published computational cognitive 
model of learned trust are discussed. A solution is proposed to 
overcome these limitations and expand the model’s scope of 
applicability. The revised model integrates several seemingly 
unrelated categories of findings from the literature and makes 
unintuitive predictions for future studies. The implications of 
the model for the advancement of the theory on trust are 
discussed.    

Keywords: trust; trustworthiness; trust propensity; learned 
trust; computational cognitive model; unified theories   

Introduction and Background 
Newell (1990) called for unified theories of cognition 
specified computationally as cognitive architectures. A 
cognitive architecture is a single system of cognitive 
mechanisms that operate together to produce the full range 
of human cognition. Unified theories are the quintessence of 
scientific progress. They constrain the myriad of possible 
interpretations of empirical data, facilitate communication 
among theorists, and motivate new avenues for empirical 
research. Here we focus on the field of trust research, 
particularly on what has been referred to as learned trust 
(Hoff & Bashir, 2015), and attempt to integrate it in the 
ACT-R cognitive architecture (Anderson, 2007). Although 
the field of trust already comprises an impressive volume of 
empirical findings, micro-theories, meta-analyses, and 
integrative accounts (e.g., Rousseau, Sitkin, Burt, & 
Camerer, 1998; Mayer, Davis, & Schoorman, 1995; 
Schoorman, Mayer, & Davis, 2007; Lee & See, 2004; Hoff 
& Bashir, 2015; Schaefer, Chen, Szalma, & Hancock, 
2016), it could benefit from the kind of integration that is 
afforded within a cognitive architecture. Studying trust from 
a cognitive architecture perspective allows not only 
integration of various empirical findings from the trust 
literature but also understanding how trust relates to other 
cognitive mechanisms and phenomena.     

The starting point for the effort reported here is a 
published model of learned trust (Juvina, Lebiere, & 
Gonzalez, 2015; referred to as “the published model” in the 
remainder of the paper). In the next section we briefly 
review the key features of the published model and discuss 
its main strengths and limitations. Then, we devote another 
section to a revised model (referred to as “the revised 
model” in the remainder of the paper) that is intended to 
overcome the limitations of the published model. 
Subsequently, we show that the revised model can account 

for a number of results from the trust literature. In the last 
section, we discuss possible ways to further improve the 
revised model and suggest that it has the potential to 
integrate a wide range of empirical findings and thus it can 
inform the development of a unified theory of learned trust.   

Critique of the Published Model 
The published model (Juvina et al., 20151) was built in the 
ACT-R architecture and was intended to account for 
learning within and between two games of strategic 
interaction – Prisoner’s Dilemma (PD) and Chicken Game 
(CG). The model is not hardwired to play a particular game; 
it learns to play any 2X2 game (Rapoport, Guyer, & 
Gordon, 1976) based on the payoff matrix that it 
experiences as it plays. Initial attempts to account for the 
transfer of learning effects between the two games in both 
directions (PD-CG and CG-PD) observed in the human data 
(Juvina, Saleem, Martin, Gonzalez, & Lebiere, 2013) based 
solely on the existing learning mechanisms of the ACT-R 
architecture were unsuccessful. A novel trust learning 
mechanism had to be added to the model to account for all 
the learning and transfer of learning effects in the data. 
Essentially, this trust mechanism allows models to learn not 
only about the task at hand but also about other models with 
which they interact. Although learning in individual settings 
has been extensively studied, learning about others has not 
received much attention in the cognitive modeling field. It is 
not clear whether learning about other agents uses the same 
cognitive mechanisms as learning about inanimate entities. 
Yet, empirical evidence suggests that learning from others 
and learning about others can influence task specific 
learning (Biele, Rieskamp, & Gonzalez, 2009; Yaniv & 
Kleinberger, 2000; Harris & Corriveau, 2011). The 
published model uses instance-based learning (Gonzalez, 
Lerch, & Lebiere, 2003) for opponent modeling and 
reinforcement learning for action selection. In addition, the 
reward changes as the game unfolds depending on the 
dynamics of the interaction between the two models. The 
players learn to trust each other and this affects their reward 
structure and subsequently their strategies. The trust 
mechanism consists of a “trust accumulator” that represents 
the perceived trustworthiness of the other model and a 
“trust-invest accumulator” that represents the perceived 
necessity to develop trust – a characteristic of the situation. 
For example, when the two models find themselves in a 

                                                             
1 Model code available at: http://psych-

scholar.wright.edu/astecca/software  
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self-reinforcing cycle of mutual defection, the perceived 
necessity to develop trust increases. This was a necessary 
addition to the model to overcome situations in which both 
players strongly distrust each other and persist in choosing a 
mutually destructive outcome. Humans are able to identify 
and (sometimes) overcome those situations.  

The two accumulators (trust and trust-invest) are used to 
determine the dynamics of the reward structure. Each 
accumulator starts at zero. When they both are less than or 
equal to zero, the model will act selfishly by trying to 
maximize the difference between their own payoff and the 
opponent’s payoff. This quickly leads to the mutually 
destructive outcome continually occurring during the game, 
which decreases trust in the other model but increases the 
model’s perception of trust necessity. Once the latter is 
positive, a model acts selflessly, trying to maximize the 
opponent’s payoff. This can lead to mutual cooperation and 
development of trust or models may relapse into a mutual 
destructive choice. When the trust accumulator is positive, a 
player tries to maximize joint payoff and avoid exploitation. 
Thus, the model switches between three reward functions 
depending on the dynamics of trust between the two players.  

Strengths of the published model   
The main contribution of the published model was to show 
that trust learning interacts with task specific learning to 
account for a range of learning effects in the human data. 
This model has the potential to inform a unified theory of 
learned trust because it is implemented in a cognitive 
architecture and it specifies how various learning 
mechanisms interact with (and constrain) each other. In 
agreement with the literature on trust, the published model’s 
trust is learned as a function of perceived trustworthiness 
(Mayer et al., 1995; Hoff & Bashir, 2015). In addition, the 
published model suggests that a player’s learned trust also 
depends on perceived trust necessity, which is in and of 
itself an important contribution to the literature. A validation 
study based on predictions of the published model showed 
that both perceived trustworthiness and perceived trust 
necessity are important antecedents of trust formation 
(Collins, Juvina, & Gluck, 2016).    

Limitations of the published model   
Most of the limitations of the published model stem from 
the fact the model was initially not intended to be 
comprehensive model of learned trust. Instead, the model 
had to learn trust in order to account for transfer of learning 
effects observed in the human data. The published model 
assumes that trust starts at zero and only the trust developed 
during the interaction between the two players matters. 
However, there is overwhelming evidence that a player may 
trust another player even in the absence of any interaction 
between the two players (McKnight, Cummings, & 
Chervany, 1998) and this initial propensity to trust 
determines to some extent the trust that develops during the 
interaction (Berg, Dickhaut, & McCabe, 1995; Dirks & 
Ferrin, 2001). In addition, trust propensity may be (at least 

in part) the result of learning that occurred prior to the 
current interaction (Collins et al., 2016) and a 
comprehensive model of learned trust should not ignore 
prior learning, particularly because prior learning may 
interact with current learning. This aspect was not relevant 
in the published model because the model interacted with 
only one other model, but it becomes very relevant in the 
context of learning from interacting with multiple agents in 
sequence and transfer of learning from one agent to another 
(see the black-hat-white-hat effect in the next section).   

The published model’s learning equation is a linear 
function that increases with every instance of evidence of 
trustworthiness and decreases with every instance of 
evidence of untrustworthiness (and similarly for evidence of 
trust necessity). The rate of accumulation is equal for 
positive and negative evidence and is constant throughout 
the entire history of interaction. The following is the 
equation for state trust learning that was used in the 
published model, 

 
!"! = ! !"!−1 + !!"#!                       (1) 

 
where STt is state trust at time t, STt-1 is state trust at time t-
1, and PETt is perceived evidence of trustworthiness at time 
t. A similar equation was used for trust necessity.      

This equation worked well in the context of the published 
model but is problematic because it is not in full agreement 
with what is known about the dynamics of trust. Trust is 
hard to gain and easy to lose, a characteristic that has been 
referred to as trust asymmetry (Slovic, 1993). Trust learners 
exhibit the same negativity bias that is described in the 
impression formation literature (Skowronski & Carlston, 
1989; Yaniv & Kleinberger, 2000), that is, unfavorable 
information tends to be more influential than favorable 
information. In addition, early evidence has a stronger 
impact on trust formation than late evidence (Lount, Zhong, 
Sivanathan, & Murnighan, 2008). In general, learning 
equations tend to be power functions (Newell & 
Rosenbloom, 1981; Anderson, 2007) and it would be 
surprising if trust learning were an exception.    

Another limitation of the published model is that it 
assumes that all trustors are able to assess equally well 
trustworthiness and trust necessity. However, a trustor’s 
cognitive ability to assess a trustee’s trustworthiness has 
been proposed to be an important antecedent of trust 
(Lyons, Stokes, & Schneider, 2011; Sturgis, Read, & Allum, 
2010; Yamagishi, Kikuchi, & Kosugi, 1999). In general, 
cognitive ability is an important predictor of learning, thus it 
is not surprising that it is also related to learned trust.             

The Revised Model    
Before introducing our revisions to the published model, we 
specify the terminology used in this model. Trait trust is the 
term we use for trust propensity (also called dispositional 
trust in the literature). State trust is the trust that develops 
during a particular interaction in a particular situation, thus, 
is a function of the perceived evidence of trustworthiness 
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and perceived evidence of trust necessity. In our view, 
learned trust includes both trait and state trust; trait trust is 
learned from the ensemble of past interactions and state trust 
is learned from the current interaction. The starting value of 
state trust at the beginning of the current interaction is the 
trustor’s trait trust. This reflects the finding that humans 
place a certain amount of trust in strangers that they know 
nothing about (Berg, Dickhaut, & McCabe, 1995). State 
trust is updated during an interaction depending on 
perceived evidence of trustworthiness and perceived 
evidence of trust necessity. At the end of the current 
(repeated) interaction, trait trust is updated with an 
increment that is a function of the state trust developed in 
the current (just ended) interaction. This reflects the finding 
that trait trust changes as a function of experience (Collins 
et al., 2016). Trait trust deviation is the difference between 
the trait trust value at the end of the current interaction and 
the trait trust value at the beginning of the interaction. The 
trustor’s cognitive ability is indicated by the accuracy of the 
trustor’s judgments of trustworthiness and trust necessity.    

The revision2 of the published model consists of replacing 
the linear function that was used to update the trustor’s state 
trust with the following power function,    
 

!"! = ! !"!−1! + !!"#! − ! ∗ !!"                   (2) 
 

where STt is state trust at time t, STt-1 is state trust at time t-
1, a is a constant power exponent with a value less than 1 
(a<1), PETt is perceived evidence of trustworthiness at time 
t, TTD is the trait trust deviation computed after the 
previous interaction with another person, and b is the 
perception bias that scales how much PETt is adjusted as a 
function of the trustor’s previous experience with another 
trustee. A similar equation was used for trust necessity.      

In the revised model, both trait and state trust are positive 
or zero. A value of zero signifies the absence of trust. The 
evidence of trustworthiness can be positive (indicating a 
degree of trustworthiness) or negative (indicating a degree 
of untrustworthiness). The initial value of state trust is the 
value of trait trust that was updated after the previous 
interaction with another person (STt0 = TT). In our 
simulations, we set the initial trait trust somewhere in the 
middle of the range of values that state trust can take during 
a repeated interaction with a specific person, depending on 
the range of values that the evidence of trustworthiness can 
take. We assume that weighting of the evidence is task 
specific.  

The continuous value of state trust can be used to make 
categorical judgments (i.e., trust or distrust) by comparing it 
against the value of trait trust. If the current value of state 
trust is greater than the value of trait trust, then the trustor is 
said to trust the trustee. If the current value of state trust is 
less than the value of trait trust, then the trustor is said to 
distrust the trustee.   

                                                             
2 Model code available at: http://psych- 

scholar.wright.edu/astecca/software   

The power exponent (a) is currently set to 0.99 in all our 
simulations. The assumption behind this component of the 
equation is that the more recent values are more important 
than the older values of state trust. A consequence of this 
assumption is that trust decays in time if new evidence of 
trustworthiness is not perceived. Note that for a = 1 and 
TTD = 0, equations (1) and (2) are identical.      

Figure 1 shows a hypothetical case in which a trustor 
repeatedly interacts with a trustee for 200 rounds. The 
trustor perceives evidence of trustworthiness (PET = 1) for 
the first 100 rounds, then evidence of untrustworthiness  
(PET = -1) for 5 rounds, and then again evidence of 
trustworthiness  (PET = 1) for the remaining 95 rounds. 
State trust accumulates rapidly in the first 50 rounds after 
which it starts to approach an asymptote, that is, a state of 
diminishing returns for every new piece of evidence of 
trustworthiness. In addition, the state trust that was 
accumulated over 100 rounds is lost almost entirely in 5 
rounds, manifesting trust asymmetry (Slovic, 1993).        

 
Figure 1: A hypothetical case illustrating how state trust 

changes over the course of 200 rounds of interaction with 
another player. The trustor perceives evidence of 

trustworthiness for the first 100 rounds, then evidence of 
untrustworthiness for 5 rounds, and again evidence of 

trustworthiness for 95 rounds. 
 
The term trait trust deviation (TTD in equation 2) becomes 
relevant when a trustor interacts with multiple trustees in 
sequence. In such cases, empirical studies suggest that the 
experience from a previous interaction influences how the 
trustor perceives the evidence of trustworthiness in the 
current interaction. For example, De Melo, Carnevale, and 
Gratch (2011) review evidence and possible explanations 
for the black-hat/white-hat (or bad-cop/good-cop) effect 
from the negotiation literature: playing a first game with an 
opponent with a competitive stance (black-hat) followed by 
a second game with an opponent with a cooperative stance 
(white-hat) is more effective in reducing distance to 
agreement than any other pairing of the black-hat and white-
hat opponents (Hilty & Carnevale, 1993). We implemented 
the explanation of the black-hat/white-hat effect that is 
based on the concepts of adaptation and comparison level 
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(Helson, 1964). Theories of adaptation propose that people 
become accustomed to a reference point as a result of prior 
experience; this point then serves as a comparison for the 
judgment of subsequent experiences. Thus, a cooperative 
second bargainer should be judged as more cooperative if 
the first bargainer was competitive rather than cooperative. 
In terms of our learned trust theory, the prior experience of 
untrustworthiness shifted the trustor’s reference point 
toward low values of trustworthiness. In this context, 
evidence of trustworthiness from a new interaction is 
perceived as outside of the expected range which gives it a 
larger subjective weight. In our model, we assume that the 
change in the subjective perception of the new evidence is 
proportional to the adjustment (i.e., adaptation in Helson’s 
terms) of the reference point caused by the previous 
experience. The reference point is the trustor’s trait trust. 
For example, if the trustor’s previous experience with an 
untrustworthy trustee caused a large shift in her trait trust, 
the corresponding bias in her subjective perception of a new 
trustee will also be large (and vice-versa). Thus, a trustor’s 
previous trait trust deviation (TTD) determines the extent to 
which the perceived evidence of trustworthiness (PET) is 
adjusted. 

To conclude the description of the revised model, only the 
trust learning mechanism has been revised, all the other 
mechanisms of the published model (learning to anticipate 
the opponent’s move and to select the best move in each 
context, see Juvina et al., 2015) have been left unchanged.                

Model Validation  
We expect that the revised model is able to generalize to a 
wide range of empirical phenomena while maintaining the 
ability of the published model to explain the learning and 
transfer of learning effects from the original dataset.  

Learning and transfer of learning effects in 
Prisoner’s Dilemma and Chicken Game    
Juvina et al. (2013) recruited 120 participants to play 
Prisoner’s Dilemma and Chicken Game for 200 rounds 
each. The participants were paired with one another and 
assigned to play the two games in one of two order 
conditions: PD-CG and CG-PD. The results revealed a wide 
range of within-game learning and between-game transfer of 
learning effects. The published model was fit in its entirety 
to this dataset by tweaking 11 free parameters (see Table 4 
in Juvina et al., 2015). With regard to the revised model, 
only the six free parameters associated with the trust 
mechanism were refit to the human data reported in Juvina 
et al. (2013). Four of the six parameters are associated with 
the “trust accumulator” that represents the perceived 
trustworthiness of the other player and the other two are 
associated with the “trust-invest accumulator” that 
represents the perceived necessity to develop trust. The 
values of these parameters specify how much perceived 
evidence of trustworthiness (PET in equations 1 and 2) is 
added to (or subtracted from) the trust accumulator for each 
outcome of the game. Two of the six parameters (i.e., the 

parameter with the lowest absolute value for each 
accumulator) were kept at their values from the published 
model, thus, allowing only four model parameters to 
fluctuate. The fit procedure maximized the correlation (r) 
and minimized the root mean squared deviation (RMSD) 
between the model data and the human data3.  

Table 1 shows the best fitting parameter values for the 
revised model and the published model. They did not 
change dramatically; as a matter of fact, one of them did not 
change at all, even though it was allowed to vary freely. 
Thus, only three parameters have been readjusted in the 
revised model. These parameters were held constant for all 
but one of the simulations reported below. They were 
readjusted for Lount et al. (2008) data because a very 
different payoff matrix was used in that study.    

 
Table 1. The best fitting parameter values for the revised 

model and the published model for each of the four game 
outcomes, mutual cooperation (CC), unilateral cooperation 

(CD), unilateral defection (DC), and mutual defection (DD).  
An asterisk (*) indicates that a particular value was held 

constant during the model fitting procedure. 
 

Outcome Published model Revised model 
 Trust Invest Trust Invest 

CC 3 NA 6 NA 
CD -10 -1 -7 -1 
DC 10 NA 9 NA 
DD -1 .18 -1* .18* 

 
The fit of the revised model to the human data (r = .90, 

RMSD = .07) was slightly (but not significantly) better than 
the fit of the published model (r = .89, RMSD = .09). The 
revised model also exhibited the same transfer of learning 
effects observed in the human data.  

Collins et al. (2016) conducted a follow-up study in which 
320 participants recruited from the website Amazon 
Mechanical Turk played PD and CG for 50 rounds each in 
one of four possible game orders (PD-PD, PD-CG, CG-PD, 
or CG-CG). Participants were paired with computerized 
confederate agents whose behavior (i.e., strategy & 
trustworthiness) was manipulated to result in 16 different 
experimental conditions. The published model (Juvina et al., 
2015) was used to generate a priori predictions for Collins 
et al. (2016) study. The predictions were published before 
the data were collected (Collins, Juvina, Douglas, & Gluck, 
2015). A majority of the model predictions across all of the 
sixteen experimental conditions was confirmed and the trust 
mechanism was proven to be a necessary component of the 
published model (see Collins et al., 2016, for details). Here 
we test the revised model against the dataset from Collins et 
al. (2016) without any parameter tweaking. The data 
includes round-by-round proportions for five outcomes in 

                                                             
3 High performance computing facilities at the Air Force 

Research Laboratory and the web service mindmodeling.org 
(Harris, 2008) were used for the model fitting procedure.   
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16 conditions. The revised model accounts for the human 
data slightly (but not significantly) better (r = .68, RMSD = 
.33) than the published model (r = .64, RMSD = .33).  

Unified account of trust and distrust effects    
It has been proposed that trust and distrust are different 
constructs (Lewicki, McAllister, & Bies, 1998; Sitkin & 
Roth, 1993). Here we suggest that the different dynamics of 
trust and distrust can be modeled by a single equation. In the 
previous section we showed how equation 2 produces trust 
asymmetry (Slovic, 1993; see Figure 1). A consequence of 
trust asymmetry is the fact that early trust breaches are more 
influential than late trust breaches for the overall trust that 
develops in a repeated interaction, which is exactly what 
Lount et al. (2008) found. Lount et al. (2008) conducted two 
experiments in which participants played an iterated game 
of Prisoner’s Dilemma for 30 rounds. Participants were 
assigned to 1 of 4 experimental conditions (control, 
immediate, early, and late) and played the game with a 
confederate agent whom they were told was another 
participant. During the control condition, the confederate 
agent cooperated on all 30 rounds. In the other three 
conditions, the confederate agent cooperated on each round 
except for two consecutive trials on which it defected. These 
trust breaches occurred immediately (rounds 1 and 2), early 
(rounds 6 and 7), or late (rounds 11 and 12). The main 
finding revealed that the immediate and early breaches 
significantly decreased the frequency of cooperation during 
the last ten rounds of the game as compared to the late 
breach. 

Our revised model is able to account for the basic pattern 
of results, that is, the different amounts of cooperation in 
control, immediate, early, and late conditions (r = 0.99, 
RMSD = 0.33). One possible explanation for the large 
RMSD is a manipulation in the experiment that was not 
modeled: participants read a passage about the importance 
of cooperation before the start of the game. Our revised 
model is able to explain Lount et al.’s findings based on the 
dynamics of state trust. Reestablishing trust after a breach is 
a long process. In the case of early breaches, most of the 
rounds of the interaction are used to (slowly) reestablish 
trust. In the case of late breaches, most of the trust 
accumulates before the breach, leaving a smaller number of 
rounds of interaction to be damaged by the breach. This is 
consistent with results from the impression formation 
literature, emphasizing the importance of making a good 
first impression (Ambady & Rosenthal 1993).           

Black-hat/white-hat effect   
De Melo, Carnevale, and Gratch (2011) had participants 
play Prisoner’s Dilemma with two different computerized 
confederate agents (cooperative & individual). Each agent 
was represented by a different animated face. Both agents 
used the same strategy (Tit-for-Tat), but displayed different 
facial expressions, representing different emotional 
reactions, to particular outcomes during the game (e.g., the 
cooperative agent expressed joy after instances of mutual 

cooperation and the individual agent expressed joy after 
instances unilateral defection). The authors suggested that 
participants used reverse appraisal to identify, from the 
agents’ emotional displays, what the intentions of the agent 
were. The cooperative agent expressed emotions congruent 
with attempting to maximize the joint payoff of both 
players, whereas the individual agent expressed emotions 
congruent with attempting to maximize its own payoff. 
Participants played 25 rounds with each of the confederate 
agents in one of two orders, the cooperative agent then the 
individual agent (C-I), or the individual agent and then the 
cooperative agent (I-C). Given that the strategy of the two 
agents was identical, trustworthiness could only be inferred 
from facial expressions. Other authors have also shown that 
the pattern of trust learning can be influenced by incidental 
learning from facial expression, eye gaze, etc. (e.g., 
Strachan, Kirkham, Manssuer, & Tipper, 2016). De Melo et 
al. (2011) found that participants were sensitive to the 
emotions displayed by the two agents: they cooperated more 
with the cooperative agent than with the individual one. In 
addition, they found evidence for the black-hat/white-hat 
effect, as defined in the previous section. We did not 
explicitly model the process of inferring trustworthiness 
from facial expressions. Instead, we added 12 parameters 
that translated particular emotions into specific amounts of 
evidence of trustworthiness and trust necessity. However, 
these parameters by themselves did not make the model 
exhibit the black-hat/white-hat effect. The key difference 
was made by the trait trust deviation parameter (TTD in 
Equation 2), which allowed the model to fit the human data 
(r = .86, RMSD = .11) and reproduce the black-hat/white-hat 
effect.    

Conclusion and Future Work 
We presented a cognitive model of learned trust that 
integrates several seemingly unrelated categories of findings 
from the literature and thus makes headway toward a unified 
theory of learned trust. The model cumulates learning from 
its history of interactions with multiple other models (trait 
trust), learning from its current interaction (state trust), and 
(sometimes) incidental learning from facial expressions. The 
model predicts that trust decays toward distrust in the 
absence of evidence of trustworthiness or untrustworthiness. 
Our future empirical work will aim to test this novel model 
prediction. Our future modeling work will focus on better 
specifying the relationship between the dynamics of trait 
trust in past interactions and the perception of 
trustworthiness in the current interaction.  
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