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A proposal for a unified theory of learned trust implemented in a cognitive architecture is presented. The

theory is instantiated as a computational cognitive model of learned trust that integrates several seemingly

unrelated categories of findings from the literature on interpersonal and human-machine interactions and

makes unintuitive predictions for future studies. The model relies on a combination of learning mechanisms

to explain a variety of phenomena such as trust asymmetry, the higher impact of early trust breaches, the

black-hat/white-hat effect, the correlation between trust and cognitive ability, and the higher resilience of

interpersonal as compared to human-machine trust. In addition, the model predicts that trust decays in the

absence of evidence of trustworthiness or untrustworthiness. The implications of the model for the advance-

ment of the theory on trust are discussed. Specifically, this work suggests two more trust antecedents on the

trustor’s side: perceived trust necessity and cognitive ability to detect cues of trustworthiness.
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1 INTRODUCTION

The field of trust research affords a productive interplay between theory and practice. Recently,
there has been increased interest in research on trust driven by practical problems and applica-
tions in areas as diverse as peacekeeping, robotics, healthcare, and education. To meet practical de-
mands, the theory on trust development must bridge conventional gaps between cognition, affect,
and meta-cognition, individual and interpersonal, psychology, computer science, and economics,
and so on. The recent proliferation of virtual (i.e., geographically distributed and/or technology
mediated) teams brings a surge of scientific and practical interest in trust [1, 2].

Allen Newell [3] called for unified theories of cognition specified computationally as cognitive
architectures. He mentioned cognitive science was mature enough to start working on unified the-
ories and there should be multiple attempts of such theories. A cognitive architecture is a single
system of cognitive mechanisms that operate together to produce the full range of human cog-
nition. Unified theories are the quintessence of scientific progress. They constrain the myriad of
possible interpretations of empirical data, facilitate communication among theorists, and motivate
new avenues for empirical research. Here, we focus on the field of learned trust [4] and attempt
to integrate it in the Adaptive Control of Thought—Rational (ACT-R1) cognitive architecture [5].
Although the field is already composed of a large volume of empirical findings, micro-theories,
meta-analyses, and integrative accounts (e.g., References [6–11]), it could benefit from the kind of
integration that is afforded within a cognitive architecture.

Studying trust from a cognitive architecture perspective allows not only integration of vari-
ous empirical findings from the trust literature but also understanding how trust relates to other
cognitive mechanisms and phenomena such as motivation, learning, and strategy choice. Using
computational cognitive models as theory-building tools affords modalities of testing the validity
of a theory that other ways of theorizing cannot utilize. For example, we routinely employ ACT-R
models to generate a priori predictions. These are predictions generated by a computational model
before a human study is conducted (they can also be referred to as ex-ante predictions). Typically,
a model is developed based on theory, literature, or prior studies and used to generate predic-
tions for new tasks, new experimental conditions, or new manipulations. The study design and
setup are identical for model simulations and human data collection, and the simulation data are
as rich and fine-grained as the human data. Then, based on the results of the human study, the
model is revised, new predictions are generated, and the theory development cycle is repeated.
Furthermore, having the theory expressed in computational terms could facilitate its translation
into practical applications. For example, the work presented here has the potential to contribute
to further developments of ACT-R in the area of robotic autonomy [12].

The starting point for the effort reported here2 is a published model of learned trust [13], referred
to as “the one-counterpart-linear model” or “the old model” in the remainder of the article for rea-
sons that will become clear in the next section. In the next section, we review the key features of the
one-counterpart-linear model and discuss its main strengths and limitations. Then, we devote an-
other section to a revised model (also referred to as “the multiple-counterparts-non-linear model”
or “the new model” in the remainder of the article) that is intended to overcome the limitations of
the one-counterpart-linear model and expand its scope of applicability. Subsequently, we present
our model validation efforts and also show that the multiple-counterparts-non-linear model can ac-
count for a number of results from the literature on both interpersonal and human-machine trust.

1See http://act-r.psy.cmu.edu for software and documentation.
2Parts of this paper (some of the sections referring to trust in interpersonal interaction) were presented at the International

Conference on Cognitive Modeling (Juvina et al. 2016). The current paper includes an expanded theoretical background,

additional model simulation results, a more extensive discussion of the results, and two new sections on individual differ-

ences and human-machine interaction, respectively.
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In the last section, we discuss possible ways to further improve the multiple-counterparts-non-
linear model and suggest that it has the potential to integrate a wide range of empirical findings,
and thus it can inform the development of a unified theory of learned trust.

Before introducing the two models, we specify the terminology used to describe these models
(see Table T2 in Appendix A for names, acronyms, and descriptions of the model parameters). Trait

trust is the term we use for trust propensity (also called dispositional trust in the literature). State

trust is the trust that develops during a particular interaction in a particular situation and, thus,
is a function of the perceived evidence of trustworthiness and perceived evidence of trust necessity.
State trust is characterized by the values of two accumulators, trust and trust-invest, described in
a previous paper [13] and in Section 2. In our view, both trait and state trust are learned; trait trust
(trust propensity) is learned from the ensemble of past interactions, and state trust is learned from
the current interaction. The starting value of state trust at the beginning of the current interaction
is the trustor’s trait trust. This reflects the finding that humans place a certain amount of trust in
strangers that they know nothing about [14]. State trust is updated during an interaction depend-
ing on perceived evidence of trustworthiness and perceived evidence of trust necessity. At the end
of the current (repeated) interaction, trait trust is updated with an increment that is a function of
the state trust developed in the current (just ended) interaction. This reflects the finding that trait
trust changes as a function of experience [15]. Trait trust deviation is the difference between the
trait trust value at the end of the current interaction and the trait trust value at the beginning of this
interaction. The trustor’s cognitive ability is indicated by the accuracy of the trustor’s judgments of
trustworthiness and trust necessity. An error term is added to model individual differences in the
cognitive ability to detect the actual evidence of trustworthiness and trust necessity. The value of
the error is sampled from a normal distribution with a mean of 0 and a standard deviation that is a
function of the assumed cognitive ability, larger standard deviations corresponding to lower ability.

2 DESCRIPTION AND CRITIQUE OF THE ONE-COUNTERPART-LINEAR MODEL

The one-counterpart-linear model3 [13] was built in the ACT-R architecture and was intended to
account for learning within and between two games of strategic interaction—Prisoner’s Dilemma
(PD) and Chicken Game (CG). These are mixed-motive non-zero-sum games that are played re-
peatedly between two players.4 The individually optimal and the collectively optimal solutions
may be different. Players can choose to maximize short- or long-term payoffs by engaging in de-
fection or cooperation and coordinating their choices with each other. These features give these
games the strategic dimension that makes them so relevant to real-world situations [16]. Table T1
in Appendix A presents the payoff matrices of PD and CG that were used in data collection and
modeling [13]. Both PD and CG have two symmetric (win-win and lose-lose) and two asymmet-
ric (win-lose and lose-win) outcomes. Besides these similarities, there are significant differences
between the two games. In CG, either of the asymmetric outcomes is more lucrative in terms of
joint payoffs than the [1, 1] outcome. This is not the case in PD, where an asymmetric outcome
[10,−10] is inferior in terms of joint payoffs to the [1, 1] outcome. Long-run mutual cooperation
in CG can be reached by an optimal anti-coordination strategy (i.e., alternation of [−1, 10] and
[10,−1]) or a sub-optimal cooperation strategy [1, 1].5 The optimal strategy in PD corresponds to
the sub-optimal strategy in CG numerically, while the optimal strategy of alternation in CG shares

3Model code available at: https://science-math.wright.edu/lab/astecca-laboratory/software.
4Each player has only one counterpart, hence the name one-counterpart-linear model.
5When Chicken is played iteratively, it becomes an anti-coordination game. The long-run alternation outcome (i.e., alterna-

tion of [−1,10] and [10,−1]) Pareto-dominates the one-shot cooperation equilibrium [1,1] and is de facto mutual cooperation.
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no surface-level similarities with the optimal strategy in PD.6 Thus, although mutual cooperation
corresponds to different choices in the two games (i.e., surface-level dissimilarity), they share a
deep similarity in the sense that mutual cooperation is, in the long run, superior to competition in
both games. In a previous paper [13], we present a model that explains how players learn about
each other in a first game and transfer that learning to a second game, regardless of surface dis-
similarities between games or the order in which games are played.

The model is not hardwired to play a particular game; it learns to play any 2 × 2 game [17] based
on the payoff matrix that it experiences as it plays. Initial attempts to account for the transfer-of-
learning effects between the two games in both directions (PD-CG and CG-PD) observed in the
human data [18] based solely on the existing learning mechanisms of the ACT-R architecture were
unsuccessful. A novel trust learning mechanism had to be added to the model to account for all the
learning and transfer-of-learning effects in the data (see Reference [13] for a detailed justification of
adding a trust learning mechanism to the model, including comparisons with alternative models).
Essentially, this trust mechanism allows models to learn not only about the task at hand but also
about other models with which they interact.

ACT-R [5] is a theory of human cognition and a cognitive architecture that is used to develop
computational models of various cognitive tasks. ACT-R is composed of various modules. There
are two memory modules that are of interest here: declarative memory and procedural memory.
Declarative memory stores facts (know-what), and procedural memory stores rules about how to
do things (know-how). The rules from procedural memory serve the purpose of coordinating the
operations of the asynchronous modules. ACT-R is a hybrid cognitive architecture including both
symbolic and sub-symbolic components. The symbolic structures are memory elements (chunks)
and procedural rules. A set of sub-symbolic equations controls the operation of the symbolic struc-
tures. For instance, if several rules are applicable to a situation, a sub-symbolic utility equation
estimates the relative cost and benefit associated with each rule and selects for execution the rule
with the highest utility. Similarly, whether (or how fast) a fact can be retrieved from declarative
memory depends upon sub-symbolic retrieval equations, which take into account the context and
the history of usage of that fact. The learning processes in ACT-R control both the acquisition of
symbolic structures (i.e., learning of new declarative memories and new procedural rules) and the
adaptation of their sub-symbolic quantities to the statistics of the environment (i.e., activations of
memories and utilities of rules).

Although learning in individual settings has been extensively studied, learning about others
has not received much attention in the cognitive modeling field. It is not clear whether learning
about other agents uses the same cognitive mechanisms as learning about inanimate entities. Yet,
empirical evidence suggests that learning from others and learning about others can influence
task-specific learning [19–21]. The one-counterpart-linear model learns about both the game at
hand (i.e., PD or CG) and the counterpart (i.e., another model). It uses instance-based learning [22]
for counterpart modeling (also referred to as opponent modeling in the literature) [23] and utility
learning (a form of reinforcement learning) for action selection. Two ACT-R models run simultane-
ously and interact with each other (see Figure F1 in Appendix A for a flow diagram of the model).

At each round, each model gets as input the game matrix and the opponent model’s previous
move (as in the human study). After the two models make their moves, payoff is assigned based

6Surface-level similarities are based on descriptive or perceptual features. In contrast, deep similarities are based on struc-

tural or functional features. For example, the mutual cooperation outcome [1,1] is identical in PD and CG. Thus, PD and

CG share this surface similarity. However, [1,1] is the most efficient outcome in the long run in PD but not in CG. In CG,

the most efficient outcome in the long run is an alternation of [−1,10] and [10,−1]. Thus, on a deeper level, [1,1] in PD is

similar to alternation in CG. The surface vs. depth distinction is discussed at large in the literature on learning, transfer of

learning, and analogical reasoning (Holyoak & Koh, 1987; Gentner & Medina, 1998; Knez & Camerer, 2000).
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on the payoff matrix. At each round, the model tries to anticipate the opponent’s move based on
the opponent’s history of moves in similar contexts. To learn what move the opponent is likely to
make at each round, the model saves instances (snapshots) of prior contexts and the corresponding
moves made by the opponent in those contexts. Depending on the opponent’s playing history, one
of the alternative instances will be more active and more likely to be retrieved from memory. Thus,
the two models try to anticipate each other’s current move based on their respective histories of
moves. These anticipations occur in conditions of high uncertainty due to variability of individual
model behavior and the context of interdependence.

After anticipating the opponent’s move, the model must decide on its own move. For this de-
cision, the model leverages the principles of the ACT-R’s procedural memory, which is composed
of if-then rules. For each possible context (recent moves) and for each possible opponent’s move,
the model has two decision rules, one for each alternative move that the model can make. Each of
these rules can fire whenever the context is instantiated and the opponent is expected to make the
corresponding move. Only one rule can fire at a given time—that is, the rule with the higher utility.
The utilities of production rules are updated according to the ACT-R utility learning mechanism (a
reinforcement learning algorithm). After a number of rounds, one of the two rules corresponding
to a context and an expectation will accrue more utility, because it maximizes the reward received
by the model. A key question for this model is what the reward is. If the reward is set to the payoff
received from the game matrix, the model cannot account for the deep transfer across games found
in the human data.

The rewards are determined by the values of two accumulators: trust and trust-invest (see Ref-
erence [13] for more details). They change as the game unfolds, depending on the dynamics of
the interaction between the two models. The players learn to trust each other, and this affects
their reward structure and subsequently their strategies. The trust learning mechanism consists
of a “trust accumulator,” which represents the perceived trustworthiness of the other model, and
a “trust-invest accumulator,” which represents the perceived necessity to develop or repair trust.
For example, when the two models find themselves in a self-reinforcing cycle of mutual defection,
the perceived necessity to develop trust increases. This was a necessary addition to the model to
overcome situations in which both players strongly distrust each other and persist in choosing a
mutually destructive outcome. We have observed in our studies that humans are able to identify
and (sometimes) overcome those situations.

Each accumulator starts at zero. When they both are less than or equal to zero, the model will act
selfishly by trying to maximize the difference between their own payoff and the opponent’s payoff.
This quickly leads to the mutually destructive outcome, which decreases trust in the counterpart
but increases the model’s perception of trust necessity. Once the latter is positive, a model acts
selflessly, trying to maximize the opponent’s payoff, in an attempt to signal its willingness to
develop trust. Depending on whether the counterpart reciprocates or not, this strategy can lead
to mutual cooperation and development of trust, or the two models may relapse into the mutually
destructive outcome. When the trust accumulator is positive, the model tries to maximize joint
payoff and avoid exploitation. Thus, the model switches between three strategies, depending on
its learned trust and trust necessity. Two sets of parameters were fitted to model the human data:
standard ACT-R parameters and parameters that were introduced as part of the trust mechanism.
The latter are shown in Table 1. The former were: activations noise (i.e., variability in activation
of declarative knowledge), retrieval threshold (i.e., minimum activation of a retrievable memory),
latency factor (i.e., a parameter that determines the duration of memory retrievals), utility noise
(i.e., variability in utility of procedural knowledge), and learning rate (i.e., the rate of learning for
procedural knowledge).

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 24. Publication date: October 2019.
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The trust learning mechanism was critical to account for this particular dataset (see Reference
[13] for a thorough justification of this claim). However, a more general architectural mechanism
would be necessary to handle not only trust learning but a more general kind of learning that
allows cognitive architectures to perform value-based decision-making. For example, the decision
to (not) trust depends on evidence of (un) trustworthiness that is valenced (i.e., positive or nega-
tive). This characteristic must be adequately reflected in mental representations that support trust
decisions. Currently, ACT-R does not have a general learning mechanism for valenced values for
declarative knowledge. When such values are needed (e.g., in instance-based-learning models)
they are hand coded.7 The standard sub-symbolic quantity for declarative knowledge in ACT-R
(i.e., activation) cannot be used as a trust accumulator, because it cannot decrease as a function
of negative evidence; activation only decreases (i.e., decays) as a function of time. A proposal for
such a general architectural mechanism has been presented elsewhere [24].

2.1 Strengths of the One-counterpart-linear Model

The one-counterpart-linear model showed how trust learning interacts with task-specific learning
to account for a range of learning effects in the human data. The same model was able to account for
human data in both games including learning within each game and transfer of learning between
games in both directions. This was possible because all the game-specific information was not
included in the model but learned from the interaction between players during the games.

The observed transfer of learning was explained based on surface and deep similarities between
the two games and the players’ ability to think strategically; that is, be aware of their interdepen-
dence and choose strategies that balance individual and social motives as well as short- and long-
term interests. This model has the potential to inform a unified theory of learned trust, because
it is implemented in a cognitive architecture and it specifies how various learning mechanisms
interact with, and constrain, each other.

In addition, this model emphasizes the importance of the strategic dimension of trust develop-
ment, an aspect that is often overlooked in the trust theory. For example, the broad review of the lit-
erature by Castelfranchi and Falcone [25], while providing fair criticism to classical game-theoretic
approaches, does not do justice to the recent wealth of theorizing and empirical data from behav-
ioral game theory [16]. Furthermore, in some domains, the strategic interaction aspects of trust are
not immediately noticeable. Strategic interactions can be characterized as lasting, repeated, coop-
erative or adversarial, and involving interdependent rational agents balancing multiple motives,
constraints, and so on. For example, the interaction between humans and machines is not typically
seen as a strategic interaction (i.e., the interaction is usually limited in time and scope, the human
is the trustor and the machine is the trustee, and the machine is just a tool—it does not typically
assess the trustworthiness of the human or engage in cooperation or competition with the human
user) (e.g., Reference [26]). However, when one considers the contexts in which humans and ma-
chines interact and the dynamics of this interaction, its strategic nature becomes easier to notice.
Even when machines do not have goals and motives, the users and the designers of machines can
be seen as strategic players: Users only spend time and effort to use a system if they feel that
the designer of the system has their interests at heart [27], and successful systems are designed

7In instance-based learning [22], learning consists of accumulation of instances and retrieval of an instance relevant to the

current decision situation. An instance contains a decision situation, the action that was taken in that situation, and the

value (or utility) of that action. Typically, the instances and their values are hand coded. That is, the modeler initializes

the model with a set of instances and specifies the value (for example, correct or incorrect) of the action in each instance.

Learning occurs by selective activation of some of the instances. The model makes a decision by selectively retrieving an

instance that matches the current situation, contains an action that has a certain value (for example, correct), and has the

highest activation. Activation of an instance increases with frequency and recency of occurrence and decreases with time.
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by engineers who understand the social and organizational aspects of the system’s use [28]. In
the near future, one could imagine machines that would be able to engage and develop strategic
relationships with humans and other strategic agents. An imaginary example of what a strategic
agent might look like is a companion robot that could form a relationship with a human child and
maintain that relationship for a lifetime while learning to adapt to changes in the counterpart’s
knowledge, skills, preferences, priorities, and so on. The one-counterpart-linear model specifies
how trust development is influenced by the strategic relationship between the two counterparts.

In agreement with the literature on trust, the one-counterpart-linear model’s trust is learned
as a function of perceived trustworthiness [7, 10]. Most of the existing computational models of
trust include some form of (weighted) aggregation of past evidence of trustworthiness (e.g., Ref-
erences [29, 30]); our one-counterpart-linear model takes advantage of the cognitively plausible
memory mechanisms of ACT-R to achieve this aggregation.

In addition, the one-counterpart-linear model asserts that a player’s learned trust also depends
on perceived trust necessity, which is in and of itself an important contribution to the literature.
A validation study based on predictions of the one-counterpart-linear model showed that both
perceived trustworthiness and perceived trust necessity are important antecedents of trust
formation [15]. When trust is low and trust necessity is high, the model switches to a strategy
of maximizing the counterpart’s payoff in an attempt to signal its willingness to develop trust.
This seemingly altruistic strategy could not be justified based on perceived trustworthiness, but
it makes perfect sense in the context of perceived trust necessity. It is also consistent with Mayer
et al.’s [7] definition of trust, in that the trustor acts upon their willingness to be vulnerable to
the counterpart’s actions.

There are many other valuable features of the one-counterpart-linear model that are discussed
at length in our previous publications [13, 15]. They support our general conclusion that most of
the core assumptions of the one-counterpart-linear model are valid. Next, we focus on the one-
counterpart-linear model’s limitations (Section 2.2) and improvements (Section 3).

2.2 Limitations of the One-counterpart-linear Model

The one-counterpart-linear model assumes that trust starts at zero and only the trust developed
during the interaction between the two players matters. However, there is overwhelming evidence
that a player may trust another player even in the absence of any interaction between the two play-
ers [31], and this initial propensity to trust determines to some extent the trust that develops during
the interaction [14, 32]. In addition, trust propensity may be (at least in part) the result of learning
that occurred prior to the current interaction. Collins, Juvina, and Gluck [15] measured trait trust
(i.e., trust propensity) before and after participants played two games of strategic interaction with
a preprogrammed confederate agent and found that trait trust changed slightly but significantly
over the course of an experiment that lasted about 45mins (see their Figure 3; see also Figure 1
in this article). By extrapolation, one can conclude that someone’s current level of trait trust may
be the result of their prior interactions. In other words, trait trust (trust propensity) can also be
considered learned trust (at least partially). A comprehensive model of learned trust cannot afford
to ignore prior learning, particularly because prior learning may interact with current learning.
This aspect was not relevant in the one-counterpart-linear model, because the model interacted
with only one other model, but it becomes very relevant in the context of learning from interact-
ing with multiple agents in sequence and transfer of learning from one agent to another (see the
black-hat/white-hat effect in the next section).

The one-counterpart-linear model’s learning equation is a linear function that increases with
every instance of evidence of trustworthiness and decreases with every instance of evidence of
untrustworthiness (and similarly for evidence of trust necessity). The rate of accumulation is equal

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 24. Publication date: October 2019.



24:8 I. Juvina et al.

Fig. 1. Change in trait trust (trust propensity) as a function of counterpart’s trustworthiness. The measure-

ment units on the Y-axis are subdivisions of a Likert scale. For example, 0.10 is a tenth of a point (e.g., the

difference between 3.1 and 3.2) on a 5-point Likert scale. Error bars represent standard errors of the mean.

The difference between the two groups (high and low trustworthiness) is significant (Welch Two Sample

t-test: t(271.6) = 2.6, p < 0.01).

for positive and negative evidence and is constant throughout the entire history of interaction. The
following is the equation for state trust learning that was used in the one-counterpart-linear model:

STt = STt−1 + PETt , (1)

where STt is state trust at time t, STt-1 is state trust at time t-1, and PETt is perceived evidence of
trustworthiness at time t. A similar equation was used for trust necessity. This equation worked
well in the context of the one-counterpart-linear model but is problematic, because it is not in full
agreement with what is known about the dynamics of trust. Trust is hard to gain and easy to lose, a
characteristic that has been referred to as trust asymmetry8 [24, 33]. Trust learners exhibit the same
negativity bias that is described in the impression formation literature [35, 36]; that is, unfavorable
information tends to be more influential than favorable information or experience. Evidence of

8Trust asymmetry refers to the different effect of trustworthiness and untrustworthiness on the dynamics of trust: Trust

increases slightly following evidence of trustworthiness but decreases abruptly following evidence of untrustworthiness.

It does not refer to asymmetry between trustor and trustee.
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trust asymmetry was also observed in our aforementioned study [15]. Figure 1 shows changes
in the trustor’s trait trust (trust propensity) as a function of the trustee’s trustworthiness. When
the trustors interacted with high-trustworthiness confederates, their trait trust increased slightly
but not significantly. When the trustors interacted with low-trustworthiness confederates, their
trait trust decreased significantly. Thus, negative experiences were more influential than positive
experiences. Though the difference in the trustor’s trait trust made by a 45-minute interaction
with a high- or low-trustworthiness counterpart is very small (i.e., less than a tenth of a point on
a 5-point Likert scale), the accumulation of similar experiences over a lifetime can be substantial,
explaining why people can have very high or very low trust propensity (i.e., trait trust).

Another known effect that was only partially captured by the one-counterpart-linear model was
the fact that early evidence has a stronger impact on trust formation than late evidence [37]. More
generally, the literature on impression formation shows that first impressions matter more than
later impressions for person perception [38, 39].

Another limitation of the one-counterpart-linear model is that it assumes that all trustors are
able to assess trustworthiness and trust necessity equally well. However, a trustor’s cognitive abil-
ity to assess a trustee’s trustworthiness has been proposed to be an important antecedent of trust
[40–42]. In general, cognitive ability is an important predictor of learning, thus it is not surprising
that it is also related to learned trust. Last, learning equations tend to be power functions [5, 43],
and it would be surprising if trust learning were an exception.

Last, the one-counterpart-linear model was somewhat limited in scope. In this article, we begin
to address the question of whether the model can be generalized to domains other than strategic
interaction; for example, trust in automation or in autonomous agents.

2.3 Multiple-counterparts-non-linear Model

The revision9 of the one-counterpart-linear model consists of replacing the linear function that
was used to update the trustor’s state trust with the following power function:

STt = ST a

t−1 + PETt − b ∗TTD, (2)

where STt is state trust at time t, STt-1 is state trust at time t-1, a is a constant power exponent
with a value less than 1 (a < 1 will be referred to as the trust decay parameter), PETt is perceived
evidence of trustworthiness at time t, TTD is the trait trust deviation computed after the previous
interaction with another person, and b is the perception bias that scales how much PETt is adjusted
as a function of the trustor’s previous experience with another trustee. A similar equation was used
for trust necessity.

In the multiple-counterparts-non-linear10 model, both trait and state trust are positive or zero.
A value of zero signifies the absence of trust. The evidence of trustworthiness can be positive,
indicating a degree of trustworthiness, or negative, indicating a degree of untrustworthiness. The
initial value of state trust is the value of trait trust that was updated after the previous interaction
with another person (STt0 = TT). In our simulations, we set the initial trait trust somewhere in
the middle of the range of values that state trust can take during a repeated interaction with a
specific person, depending on the range of values that the evidence of trustworthiness can take.
We assume that weighting of the evidence is task-specific.

The actual evidence of trustworthiness (AET) may be perceived more or less accurately, resulting
in perceived evidence of trustworthiness (PET). An error term e is added to represent the trustor’s

9Model code available at: https://science-math.wright.edu/lab/astecca-laboratory/software.
10The assumption here is that each player interacts with one counterpart at a time but with multiple counterparts in

sequence, hence the name multiple-counterparts-non-linear model.
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imperfect ability to detect and decode trustworthiness signals.

PET = AET + e (3)

The continuous value of state trust is used to make categorical judgments (i.e., trust or distrust)
by comparing it against the value of trait trust. If the current value of state trust is greater than
the value of trait trust, then the trustor is said to trust the trustee. If the current value of state trust
is less than the value of trait trust, then the trustor is said to distrust the trustee.

Trait trust (trust propensity) is updated when changing counterparts—that is, at the end of an
interaction with a counterpart and before interacting with another counterpart. The update in trait
trust (i.e., trait trust deviation, TTD) is a function of the state trust. At this moment, we don’t have
a clear idea of what this function might look like. We know from our empirical work [15] that
TTD is very small (as compared to the range of state trust) and is positive after an interaction that
increased state trust and negative after an interaction that decreased state trust. In other words,
trait trust tends to follow the dynamics of state trust across different counterparts but on a much
smaller scale. For current purposes, we use the following formula:

TTD =
ST −TT

k
, (4)

where TTD is trait trust deviation computed after interacting with a counterpart, TT is the old
value of trait trust that is being updated, ST is the current value of state trust, ST–TT is the value
of state trust that was accrued in that interaction, and k (higher or equal to 1) is a parameter that
scales down the value of state trust. TTD is added to the old TT to compute the new TT.

The power exponent a must be lower than 1 to make trust a leaky accumulator. It is currently
set to 0.99 in all our simulations. The assumption behind this component of the equation is that
the more recent values are more important than the older values of state trust. A consequence of
this assumption is that trust decays in time if new evidence of trustworthiness is not perceived.
Note that for a = 1 and TTD = 0, Equations (1) and (2) are identical.

Figure 2 shows a hypothetical case in which a trustor repeatedly interacts with a trustee for 200
rounds. The trustor perceives evidence of trustworthiness (PET = 1) for the first 100 rounds, then
evidence of untrustworthiness (PET = −1) for 5 rounds, and then again evidence of trustworthiness
(PET = 1) for the remaining 95 rounds. State trust accumulates rapidly in the first 50 rounds, after
which it starts to approach an asymptote—that is, a state of diminishing returns for every new
piece of evidence of trustworthiness. In addition, the state trust that was accumulated over 100
rounds is lost almost entirely in 5 rounds, manifesting trust asymmetry [34].

The term trait trust deviation (TTD in Equation 2) becomes relevant when a trustor interacts
with multiple trustees in sequence. In such cases, empirical studies suggest that the experience
from a previous interaction influences how the trustor perceives the evidence of trustworthiness
in the current interaction. For example, De Melo, Carnevale, and Gratch [44] review evidence
and possible explanations for the black-hat/white-hat (or bad-cop/good-cop) effect from the ne-
gotiation literature: Playing a first game with an opponent with a competitive stance (black-hat)
followed by a second game with an opponent with a cooperative stance (white-hat) is more ef-
fective in reducing distance to agreement than any other pairing of the black-hat and white-hat
opponents [45]. We implemented the explanation of the black-hat/white-hat effect that is based on
the concepts of adaptation and comparison level [46]. Theories of adaptation propose that people
become accustomed to a reference point as a result of prior experience; this point then serves as
a comparison for the judgment of subsequent experiences. Thus, a cooperative second bargainer
should be judged as more cooperative if the first bargainer was competitive rather than cooper-
ative. In terms of our learned trust theory, the prior experience of untrustworthiness shifted the
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Fig. 2. A hypothetical case illustrating how state trust changes over the course of 200 rounds of interaction

with another player. The trustor perceives evidence of trustworthiness for the first 100 rounds, then evidence

of untrustworthiness for 5 rounds, and again evidence of trustworthiness for 95 rounds.

trustor’s reference point toward low values of trustworthiness. In this context, evidence of trust-
worthiness from a new interaction is perceived as outside of the expected range, which gives it
a larger subjective weight. In our model, we assume that the change in the subjective perception
of the new evidence is proportional to the adjustment (i.e., adaptation in Helson’s [46] terms) of
the reference point caused by the previous experience. The reference point is the trustor’s trait
trust and the adjustment is trait trust deviation. For example, if the trustor’s previous experience
with an untrustworthy trustee caused a large shift (i.e., deviation) in her trait trust, the corre-
sponding bias in her subjective perception of a new trustee will also be large (and vice versa).
Thus, a trustor’s previous trait trust deviation (TTD) determines the extent to which the perceived
evidence of trustworthiness (PET) is adjusted.

To conclude the description of the multiple-counterparts-non-linear model, only the trust learn-
ing mechanism has been revised; all the other mechanisms of the one-counterpart-linear model
(i.e., learning to anticipate the opponent’s move and to select the best move in each context) [13]
have been left unchanged.
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Table 1. The Best Fitting Parameter Values for the

Multiple-Counterparts-non-linear (MCNL) Model and the

One-counterpart-linear (OCL) Model for Both Trust

Accumulators (Trust and Invest) and for Each of the four Game

Outcomes, Mutual Cooperation (CC), Unilateral Cooperation

(CD), Unilateral Defection (DC), and Mutual Defection (DD)

Outcome OCL model MCNL model

Trust Invest Trust Invest
CC 3 NA 6 NA
CD −10 −1 −7 −1
DC 10 NA 9 NA
DD −1 .18 −1* .18*

Note: An asterisk (*) indicates that a value that was held constant during

the model-fitting procedure.

“Trust” Refers to the Increment (or Decrement) in the Trust Accumulator

as a Result of an Instance of Perceived Evidence of Trustworthiness (or

Untrustworthiness). “Invest” Refers to the Increment (or Decrement) in the

Trust-invest Accumulator as a Result of an Instance of Perceived Evidence

of Trust Necessity (or Lack Thereof).

3 MODEL VALIDATION

We expect that the multiple-counterparts-non-linear model is able to generalize to a wide range of
empirical phenomena while maintaining the ability of the one-counterpart-linear model to explain
the learning and transfer-of-learning effects from the original dataset.

3.1 Learning and Transfer of Learning in Prisoner’s Dilemma and Chicken Game

Juvina et al. [13] recruited 120 participants to play Prisoner’s Dilemma (PD) and Chicken Game
(CG) for 200 rounds each. The participants were paired with one another and assigned to play the
two games in one of two order conditions: PD-CG and CG-PD. The results revealed a wide range
of within-game learning and between-game transfer-of-learning effects. The dependent variable
consisted of round-by-round proportions of four outcomes: mutual cooperation, unilateral coop-
eration, unilateral defection, and mutual defection. The one-counterpart-linear model was fit in its
entirety to this dataset by varying 11 free parameters (see Table 4 in Reference [13]). With regard to
the multiple-counterparts-non-linear model, only the 6 free parameters associated with the trust
mechanism were refit to the human data reported in Juvina et al. [13]. Four of the 6 parameters are
associated with the “trust accumulator” that represents the perceived trustworthiness of the other
player and the other 2 are associated with the “trust-invest accumulator” that represents the per-
ceived necessity to develop trust (see Table 1). The values of these parameters specify how much
perceived evidence of trustworthiness (PET in Equations 1 and 2) is added to (or subtracted from)
the trust accumulator for each outcome of the game. Two of the 6 parameters (i.e., the parameter
with the lowest absolute value for each accumulator) were kept at their values from the old model,
thus allowing only 4 model parameters to freely vary to find best-fitting results. The range of pa-
rameter values for the model-fitting procedure was [−10, 10]. The fit procedure maximized the
correlation (r) and minimized the root mean squared deviation (RMSD) between the model data
and the human data.11

11High performance computing facilities at the Air Force Research Laboratory and the web service mindmodeling.org

(Harris 2008) were used for the model-fitting procedure.
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Table 1 shows the best-fitting parameter values for the multiple-counterparts-non-linear model
and the one-counterpart-linear model. One of them did not change at all, even though it
was allowed to vary freely. The other three parameters have been readjusted in the multiple-
counterparts-non-linear model. These parameters were held constant for all but one of the simu-
lations reported below. They were readjusted for Lount et al. [37] data, because a very different
payoff matrix was used in that study.

The fit of the multiple-counterparts-non-linear model to the human data (r(798) = .90, p < 0.01,
RMSD = .07) was slightly (but not significantly, z = 1, p = 0.32) better than the fit of the one-
counterpart-linear model (r(798) = .89, p < 0.01, RMSD = .09). The multiple-counterparts-non-
linear model also exhibited the same transfer-of-learning effects observed in the human data.

Collins et al. [15] conducted a follow-up study in which 320 participants recruited from the
website Amazon Mechanical Turk played PD and CG for 50 rounds each in one of four possi-
ble game orders (PD-PD, PD-CG, CG-PD, or CG-CG). Participants were paired with computerized
confederate agents whose behavior (i.e., strategy and trustworthiness) was manipulated to result
in 16 different experimental conditions. The one-counterpart-linear model (Juvina et al. 2015) was
used to generate a priori predictions for the Collins et al. [47] study. The predictions were pub-
lished before the data were collected [47]. A majority of the model predictions across all of the
16 experimental conditions was supported and the trust mechanism was proven to be a necessary
component of the one-counterpart-linear model (see Collins et al. [15] for details). Here, we test
the multiple-counterparts-non-linear model against the dataset from Collins et al. [15] without
any parameter optimization. The dependent variable consisted of round-by-round proportions of
five outcomes: mutual cooperation, unilateral cooperation, unilateral defection, mutual defection,
and alternation. The multiple-counterparts-non-linear model accounts for the human data slightly
(z = 2, p = 0.05) better (r(1598) = .68, p < 0.01, RMSD = .33) than the one-counterpart-linear model
(r(1598) = .64, p < 0.01, RMSD = .33).

3.2 Unified Account of Trust and Distrust Effects

It has been proposed that trust and distrust are different constructs [48, 49]. Here, we suggest that
the different dynamics of trust and distrust can be modeled by a single equation. In Section 3,
we showed how Equation (2) produces trust asymmetry (see Figure 2). A consequence of trust
asymmetry is the fact that early trust breaches are more influential than late trust breaches for
the overall trust that develops in a repeated interaction, which is exactly what Lount et al. [37]
found. They conducted two experiments in which participants played an iterated game of Pris-
oner’s Dilemma for 30 rounds. Participants were assigned to one of four experimental conditions
(control, immediate, early, and late) and played the game with a confederate agent whom they were
told was another participant. During the control condition, the confederate agent cooperated on
all 30 rounds. In the other three conditions, the confederate agent cooperated on each round ex-
cept for two consecutive trials on which it defected. These trust breaches could occur immediately
(rounds 1 and 2), early (rounds 6 and 7), or late (rounds 11 and 12). The main finding revealed that
the immediate and early breaches significantly decreased the proportion of cooperation during the
last 10 rounds of the game as compared to the late breach (see Lount et al. [37] for more details).

Our multiple-counterparts-non-linear model is able to account for the basic pattern of results—
that is, the different amounts of cooperation in control, immediate, early, and late conditions
(r (118) = 0.99, p < 0.01, RMSD = 0.30). The old one-counterpart-linear model produced a poorer
(z = 5.36, p = 0.00) fit (r(118) = 0.96, p < 0.01, RMSD = 0.31). One possible explanation for the
large root mean square deviation (RMSD) is a manipulation in the experiment that was not mod-
eled: Participants read a passage about the importance of cooperation before the start of the game.
Our multiple-counterparts-non-linear model is able to explain Lount et al.’s findings based on the
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Fig. 3. Fit of multiple-counterparts-non-linear model (red dots) to Lount et al. [2008] data (black dots). Error

bars represent 95% confidence intervals.

dynamics of state trust. Reestablishing trust after a breach is a long process. In the case of early
breaches, most of the rounds of the interaction are used to (slowly) reestablish trust. In the case of
late breaches, most of the trust accumulates before the breach, leaving a smaller number of rounds
of interaction to be damaged by the breach. This is consistent with results from the impression
formation literature, emphasizing the importance of making a good first impression [50].

The difference between the old one-counterpart-linear model and the new multiple-
counterparts-non-linear model with regard to how they fit Lount et al.’s dataset is small, because
this dataset is very simple. Of the four conditions in Lount et al.’s [37] study, only the immediate
condition leads to distrust. In the other conditions (i.e., control, early, and late), when defection oc-
curs (if at all) the accumulated trust is high enough to survive and almost never turns into distrust.
The small difference is made by the fact that the new model does not start its trust accumulator at
zero as the old model; instead, the initial value of trust for the new model is its trait trust (i.e., trust
propensity) value. An important qualitative difference is related to how the two models account
for the difference between early and late breaches observed in the human data (see Figure 3 and
Figure 2F in the Appendix). Arguably, the difference between the two models would be higher in
more complex datasets (see Section 4.5 for a much larger difference between the two models).

3.3 Black-hat/white-hat Effect

De Melo, Carnevale, and Gratch [44] had participants play Prisoner’s Dilemma with two different
computerized confederate agents (cooperative and individual). Each agent was represented by a
different animated face. Both agents used the same strategy (tit-for-tat), but displayed different
facial expressions representing different emotional reactions to particular outcomes during the
game (e.g., the cooperative agent expressed joy after instances of mutual cooperation and the in-
dividual agent expressed joy after instances of unilateral defection). The authors suggested that
participants used reverse appraisal to identify, from the agents’ emotional displays, what the in-
tentions of the agent were. The cooperative agent expressed emotions congruent with attempting
to maximize the joint payoff of both players, whereas the individual agent expressed emotions
congruent with attempting to maximize its own payoff. Participants played 25 rounds with each
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Fig. 4. Fit of multiple-counterparts-non-linear model (right panel) to De Melo et al. [37] data (left panel).

Error bars represent 95% confidence intervals.

of the confederate agents in one of two orders: the cooperative agent then the individual agent
(C-I), or the individual agent and then the cooperative agent (I-C). Given that the strategy of the
two agents was identical, the differences in trustworthiness between the two agents could only
be attributed to what was inferred from facial expressions. Other authors have also shown that
the pattern of trust learning can be influenced by incidental learning from facial expression, eye
gaze, and so on. (e.g., Reference [51]). De Melo et al. [44] found that participants were sensitive to
the emotions displayed by the two agents: they cooperated more with the cooperative agent than
with the individual one. In addition, they found evidence for the black-hat/white-hat effect; that
is, cooperation was higher when playing the first game with the individual agent (black-hat) and
the second game with the cooperative agent (white-hat) than vice versa.

We did not explicitly model the process of inferring trustworthiness from facial expressions.
Instead, we added 12 parameters that translated particular emotions into specific amounts
of evidence of trustworthiness and trust necessity (see Table T3 in Appendix A). We needed
them to differentiate between the cooperative and non-cooperative agents; these agents were
behaviorally identical and only differed in their emotional reactivity. However, these parameters
by themselves did not make the model exhibit the black-hat/white-hat effect. The key difference
was made by the trait trust deviation parameter (TTD in Equation (2)) and the trust decay
parameter (a in Equation (2)), which allowed the model to fit the human data (r (98) = 0.86, p <
0.01, RMSD = 0.11) and reproduce the black-hat/white-hat effect (Figure 4). The fit of the old
one-counterpart-linear model was not as good (r (98) = 0.75, p < 0.01, RMSD = 0.14; z = 2.23, p =

0.03). Moreover, the old model failed to produce the black-hat/white-hat effect (see Figure F3 in
the Appendix). We conducted additional analyses and determined that both components of the
new multiple-counterparts-non-linear model were necessary to produce the black-hat/white-hat
effect: the multiple-counterparts component (parameter TTD in Equations (2) and (4)) and the
non-linear component (parameter a in Equation (2)). Two lesioned versions of the multiple-
counterparts-non-linear model were created: the no-trait-trust-deviation model (TTD = 0) and
the no-non-linear model (a = 1). Both lesioned models produced significantly worse fits to the
human data than the intact model (r (98) = 0.64, p < 0.01, z = 3.73, p = 0.00, RMSD = 0.16; r (98) =
0.66, p < 0.01, z = 3.49, p = 0.00, RMSD = 0.16, respectively).
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3.4 Cognitive Ability and Trust

Up to this point, we examined the model’s ability to account for effects observed in different con-
ditions when data are averaged across individuals. Here, we consider how the model accounts for
a known effect from the trust literature that focuses on differences between individuals.

Prior research found the accuracy of trustworthiness detection to be positively correlated with
the participants’ self- reported trait trust (r = .48) and sense of interdependence (r = .55) [42]. That
is, individuals who are better or faster at detecting (un)trustworthy counterparts tend to report
higher levels of trait trust and are more aware of the fact that their interests may not be indepen-
dent of their counterparts’ interests. The assumption is that trustworthiness is not always evident
or easy to detect and trustees may have reasons to concede their actual level of trustworthiness.
Trustors need to exert social intelligence [42] or strategic vigilance [52] to detect trustworthi-
ness based on signals or cues. If we define trait trust as “default expectations of trustworthiness
of others” (Yamagishi et al. [42], p. 158), the above correlation can be stated as “the better you
are at detecting trustworthiness, the higher you expect it to be by default.” As unintuitive as it
may seem, this correlation has been shown to be robust. Sturgis, Read, and Allum [41] found that
intelligence measured in childhood predicted trait trust in adulthood. Lyons et al. [2] found that
cognitive ability was positively correlated with self-reported trust (r = 0.27) in a realistic task—a
computer-based airport simulator.

This correlation becomes easier to understand if we assume that trait trust is learned from prior
experiences, as we have observed empirically [15] and modeled here. Our model translates this
assumption into its state trust (ST) and trait trust (TT) update equations (Equations (2) and (4),
respectively). First, the model allows for the possibility that the trustee’s actions are only partially
observable, as in Reference [53]. The trustor needs to interpret the trustee’s actions and infer trust-
worthiness, which requires cognitive ability. Higher levels of cognitive ability lead to more accu-
rate estimates of trustworthiness; that is, the perceived evidence of trustworthiness (PET in Equa-
tions (2) and (3)) is close or equal to the actual evidence of trustworthiness (AET in Equation (3)),
approaching perfect trust calibration [9]. Calibrated (i.e., appropriate) trust allows individuals to
maximally benefit from interpersonal or human-machine interactions. Misplaced (i.e., too much or
too little) trust leads to either being exploited or missing opportunities for gain. We model differ-
ent levels of cognitive ability by introducing errors of different magnitudes in Equation (3). Thus,
higher cognitive ability corresponds to smaller errors and vice versa.12

We created 51 “individual” models by varying cognitive ability (i.e., error magnitude or e in
Equation (3)) and allowed them to play 100 rounds of Prisoner’s Dilemma with 10 different coun-
terparts in sequence. Each counterpart was the “average” model initialized with a random level
of trait trust, reflecting its unique history of playing against other counterparts. The error e was
fixed for a model across all its counterparts. Each individual model was initialized with a ran-
dom level of trait trust at the start of the first game. Then, starting with the second game (i.e.,
the first counterpart change), trait trust for individual models was updated by adding trait trust
deviation computed according to Equation (4). State trust was updated at each round according
to Equation (2). The whole process was repeated 10 times to collect enough data. The key data
were the trait trust values of the 51 models after interacting with 10 different counterparts. These
values were correlated with the cognitive ability values for the 51 models. The results support the
existence of a positive correlation between cognitive ability and trait trust (see Figure 5). The mag-
nitude of this correlation is comparable to the one reported by Lyons et al. [2]. Higher correlations

12We did not model cognitive ability per se but the outcomes of trustworthiness assessment at different levels of cognitive

ability.
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Fig. 5. Correlation between cognitive ability and trait trust.

can be obtained by decreasing the scaling parameter k in Equation (4) (k = 25 for the data reported
here) and reducing the amount of random variability in the data.

To understand the mechanism that explains this correlation, we divided the models in two
groups (median split) based on their cognitive ability and plotted the average proportion of mu-
tual cooperation for each group (Figure 6). On average, the models with higher cognitive abilities
were able to engage in mutual cooperation more frequently and maintain it for longer times than
models with lower cognitive abilities. Every instance of mutual cooperation provided evidence of
trustworthiness that increased state trust and eventually increased trait trust as well. The low-
ability model made errors in assessing trustworthiness, and these errors made it hard to maintain
the mutual cooperation outcome. Thus, the model supports the explanations given by Yamagishi
et al. [42] and Sturgis et al. [41] according to which socially intelligent individuals—by accurately
assessing trustworthiness (or lack thereof) in their counterparts—are able to enact and maintain
mutual cooperation while protecting themselves against exploitation.
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Fig. 6. Proportion of mutual cooperation by cognitive ability.

3.5 From Interpersonal to Human-machine Trust

Up to this point, we examined the model’s ability to account for a variety of empirical effects in the
domain of interpersonal trust. Even though some of the counterparts were pre-programmed com-
puter algorithms or computational cognitive models, the assumption was that they were behaving
and perceived as human-like. In this section, we begin to explore the similarities and differences
between interpersonal trust and human-machine trust and test whether our model can account
for some of these effects. Recently, De Visser et al. [54] studied trust dynamics (i.e., formation, vi-
olation, and repair of trust) in an experiment in which human participants received advice from a
computer, an anthropomorphized computer (avatar), or another human. The task that human par-
ticipants had to perform was a sequence-learning task. Specifically, they had to predict the next
digit from a sequence of digits that was presented one digit at a time. At each trial, the partici-
pants made a guess for the next digit in the sequence, then received advice, had the opportunity
to take the advice or keep their initial response, and received feedback with the correct response.
The advice was identical in the three conditions and was gradually deteriorating in accuracy. The
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results revealed an interesting difference between interpersonal and human-machine trust: Hu-
man participants manifested greater trust resilience in the human and avatar conditions than in
the computer condition. Trust resilience was defined as resistance to trust violations (more details
can be found in De Visser et al. [54]).

This dataset allows us to test whether our model can generalize to domains other than strategic
interpersonal interaction. There are interesting similarities and differences between the task used
in the De Visser et al. study (i.e., sequence learning, SL) and the game-theory-like tasks we have
been using so far in developing and testing the model (e.g., Prisoner’s Dilemma, PD). In both
types of tasks, participants have to predict the next item in a sequence, but in PD the next item
is generated by a counterpart (who is also predicting the next move of a counterpart), whereas in
SL it is predetermined by the experimenter (in game theory, this case is treated as a game against
nature). If we ignore the experimenter (i.e., the nature player), in both types of tasks there are two
players, but the interaction between the two players is different. The interaction is symmetrical in
PD and asymmetrical in SL: In PD, each player is simultaneously a trustor and a trustee, whereas
in SL the advisee can only be a trustor and the advisor can only be a trustee. The critical difference
seems to be about strategic interdependence: PD obviously has it and SL does not have it, because
the advisor is totally independent of the advisee.

To be able to apply our model to the sequence-learning task from De Visser et al. [54], we
assume that people behave as if they are in a strategic interpersonal interaction even when the
strategic dimension of the interaction is not apparent. For example, (some) people may regard
their computer (or car, cell phone, vacuum cleaner, etc.) as a friend (or partner) and manifest atti-
tudes and behaviors specific to strategic interpersonal interaction when using it (e.g., be nice to a
cell phone). This may seem silly, but there may be good reasons to do so; for example, it may put
one in a better mood. Furthermore, we assume that the extent to which people engage in such be-
haviors is proportional to the degree of similarity between the machine and a generic being—that
is, how human-like or animated the machine is perceived to be. Very simple features can influence
perceptions of animacy; for example, task-irrelevant abstract geometric shapes are automatically
perceived as intentional agents when they move in certain ways [55]. Having made these two
assumptions, we can use our model to account for the difference in trust resilience between the
human-human, human-avatar, and human-computer interactions. After we model the task, we
will change two parameters, trait trust (i.e., trust propensity) and trust necessity, to account for
this difference (see Table T4 in Appendix A for the best-fitting values of these parameters). Trait
trust will be set higher for the computer and the avatar and lower for the human. This reflects the
assumption that machines are designed to be trustworthy, whereas humans may show a larger
range of trustworthiness values due to conflicting motives, ability to deceive, and so on. Trust ne-
cessity will be the highest for the human-human interaction, lower for human-avatar interaction,
and the lowest for the human-computer interaction. Thus, the model will assume that humans are
more likely to invest in trust development when they interact with another human than when they
interact with a computer, even in cases where there is no apparent reason or benefit from doing so.

The sequence-learning (SL) model presented here is based on a model developed independently
by one of the co-authors of this article (WK). We have only added the trust mechanism from our
previous model [13, 56], including the advancements described in Section 3 (i.e., the multiple-
counterparts-non-linear model) to account for the extent to which participants take the offered
advice or keep their initial choice at each trial. The following is a brief description of the model
(the model code is available from the authors upon request):

First, the model reads the identity of the advisor (i.e., human, avatar, or computer) from the dis-
play and encodes it in its goal. Then, it makes a first guess as to what digit in the sequence comes
next. At first, this is truly a guess (i.e., random choice), then, as trials accumulate, the model learns
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Fig. 7. The least mean square estimates (+/− standard error) for compliance with the three human (black

line), avatar (red line), and computer (blue line) agents for both the model (left-side plot) and human data

(right-side plot).

from the feedback given at the end of each trial, so, over time it becomes an informed guess. For
this learning, the model uses the same mechanisms that it used to predict the counterpart’s move in
PD; that is, instance-based learning and sequence learning. Specifically, the model stores instances
of context-choice pairs in its declarative memory and retrieves the most active pair to make a de-
cision. For example, the model might have experienced five cases in which “2” was followed by “1”
and three cases in which “2” was followed by “3.” Based on this experience, if the correct answer in
the previous trial was “2,” the model is more likely to think that the correct answer in the current
trial is “1.” Since activations of memories in ACT-R tend to approximate the pattern of occurrences
and co-occurrences in the environment [5], over time the model learns the actual sequence that
was pre-specified by the experimenter. However, the pre-specified sequence includes randomness,
causing the model’s performance to always be (more or less) suboptimal, which justifies consid-
ering the aid’s advice. After perceiving and encoding the aid’s advice, the model decides whether
to take the aid’s advice or keep its initial choice. This decision is informed by the trust mechanism
that was imported from the strategic interaction model. The SL model learns to trust by monitor-
ing the aid’s trustworthiness and trust necessity as in the strategic interaction model. In addition,
the SL model learns to self-trust by monitoring its own trustworthiness and trust necessity. Trust-
worthiness increases with correct guesses and decreases with incorrect guesses. Trust necessity
for the aid (i.e., need to trust the aid) increases when both the model and the aid are incorrect and
decreases when the model is correct and the aid is incorrect. Trust necessity for the model (i.e.,
need to trust itself) increases when both the model and the aid are incorrect and decreases when
the model is incorrect and the aid is correct. Thus, in the SL model, accuracy was used as perceived
evidence of trustworthiness and trust necessity (PET in Equation (2)) and no perception bias or
variability in cognitive ability was assumed. The model decision to take the aid’s advice or not is
based on the values of trust and self-trust: The advice is taken when trust is higher than self-trust
and not taken otherwise. If both trust and self-trust are decreasing, the decision is based on trust
necessity and self-trust necessity: The advice is taken when trust necessity is higher than self-trust
necessity and not taken otherwise. The free parameters for the SL model were the initial trait-trust
(trust propensity) values and the increments for updating trustworthiness and trust necessity.

The SL model fits the data from De Visser et al.’s [54] experiment 1 very well (r (10) = .99, p <
0.01, RMSD = .02). Figure 7 shows the least mean squared estimates for the model’s rate of com-
pliance with the counterpart’s advice over the course of the experiment compared to the human
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data from De Visser et al.’s [54] experiment 1.13 During the initial block, when the agent’s advice
was 100% accurate, the differences in compliance are due to the model’s initial trait trust (trust
propensity). As the experiment progresses, the model learns and its assessment of the different
automated aids changes. During the final block, when the advisor’s accuracy is 0%, the opposite
pattern of compliance is observed: The model shows a higher level of compliance with the human
agent compared to the avatar or the computer agent. The difference in compliance across the three
aids arises from the model’s assessment of trust necessity for each of the automated aids. Trust
necessity is assumed to be higher in interpersonal interactions as compared to human-machine
(i.e., avatar and computer) interactions.

The one-counterpart-linear model produced a worse fit (z = 3.34, p = 0.00; see Figure F4 in the
Appendix) to De Visser et al.’s [54] data (r (10) = .79, p < 0.01, RMSD = .42) than the multiple-
counterparts-non-linear model (r (10) = .99, p < 0.01, RMSD = .02). The difference in the ability of
the two models to account for the human data from De Visser et al. [54] stems from the trust decay
parameter (a in Equation (4)). The rate of compliance in the one-counterpart-linear model remains
high over the course of the entire experiment. In contrast, the multiple-counterparts-non-linear
model shows a steady decline in compliance as the agent’s reliability decreases over the course of
the experiment (Figure 7). The difference in the dynamics of compliance between the two models
results from three different effects of the trust decay parameter.

First, before the model interacts with any of the decision aids, it undergoes a training period
where it interacts with a neutral agent. During the initial training period the model begins to
learn the number sequence of the experiment and to assess its trust in itself (i.e., self-trust). The
model’s self-trust is based on the accuracy of its initial answers. Due to the fact that the model
is initially learning the number sequence, the model’s initial performance is poor. The model’s
poor performance leads to a low self-trust evaluation. This low initial self-trust occurs in both the
one-counterpart-linear model and the multiple-counterparts-non-linear model, but the trust decay
parameter of the multiple-counterparts-non-linear model causes an important difference. In the
multiple-counterparts-non-linear model, self-trust decreases according to a power law, eventually
plateauing at a particular value. When the model’s performance on the task increases, the model’s
self-trust increases rapidly. In contrast, the old one-counterpart-linear model’s self-trust decreases
as a linear function and does not plateau. When its performance increases, its self-trust has a very
low starting point and takes a long time to reach a higher level. As a result, the old model maintains
a higher rate of compliance with the aid’s advice, even when the aid’s accuracy decreases.

Second, due to the fact that each agent starts the experiment with 100% accuracy, the model’s
trust in each agent increases to a high level at the start of the experiment. However, as with the
model’s self-trust, the trust decay parameter makes a large difference in how quickly the trust in
the agents can change. The old model’s trust in each of the agents increases linearly and is not
bound by an asymptote. As a result, it takes longer for the old model to be sensitive to the aid’s
decrease in performance and change its compliance behavior. By contrast, in the new multiple-
counterparts-non-linear model, the trust accumulator plateaus, which allows the model to be more
sensitive to the aid’s decrease in performance.

Finally, the third reason for the high rate of compliance in the old model is the lack of decay
for its trust necessity parameter. This parameter stays at relatively high values and intervenes

13The empirical data were reported in De Visser et al. (2016) as least mean squared estimates from a linear mixed effects

model. We followed the same procedure for the model simulation data. This is one of the reasons we get such a good fit:

The linear mixed effects model linearized the data for both the human and the model datasets. Most likely, the fit would

not have been as good had we attempted to fit the raw data. The second reason for obtaining a good fit is the model-fitting

process itself; that is, finding the best set of parameter values to fit this particular dataset. Thus, the model describes the

data rather than predicts them. Potentially, this model could generate equally good fits for a range of empirical outcomes.
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Table 2. The AICc Metrics for the One-counterpart-linear Model and the Multiple-

counterpart-non-linear Model for Five Separate Datasets

AICc
Dataset One-Counterpart Linear Model Multiple-Counterpart Non-Linear Model
Juvina et al. [13] −3,828.32 −4,228.25
Collins et al. [15] −35,453.18 −35,451.18
Lount et al. [37] −254.16 −259.52
De Melo et al. [44] −329.22 −370.22
De Visser et al. [54] −65.13 −136.74

Table 3. The Overall AICc and ΔAICc Metrics for the

One-counterpart-linear Model and the Multiple-counterpart-

non-linear Model Across Five Datasets

Model Overall AICc ΔAICc
Single-counterpart-linear model −39,180.63 470.64

Multiple-counterpart-non-linear model −39,651.27 0

to repair trust more often than in the new model. By allowing trust necessity to decay, the new
model maintains its ability to detect consistent drops in the aid’s trustworthiness. The combination
of these three factors leads the old model to over-comply with the decision aids over the course of
the experiment, fail to calibrate its trust to the aid’s decreasing levels of trustworthiness, and thus
fail to fit the human data. Additionally, these results reveal the importance of the new model’s
trust decay parameter in dynamic situations where a trustee’s behavior changes rapidly. When
the trust accumulator plateaus, the model can quickly recalibrate its trust to the recent evidence
of trustworthiness.

3.6 Model Comparison

So far, we have shown that the multiple-counterpart-non-linear model can account for important
trust phenomena (trust asymmetry, trust resilience, black-hat/white-hat effect, etc.) better than
the one-counterpart-linear model. However, the multiple-counterpart-non-linear model has more
free parameters. In this section, the two models are compared based on the Akaike Information
Criterion (AIC) metric [57] that takes into account both the model fit and the number of free
parameters. Given similar fit, AIC favors models that have fewer parameters. We actually used the
AICc metric, which is a small sample correction of the standard AIC metric. The necessity of the
parameters added to the multiple-counterparts-non-linear model can be assessed by comparing its
AICc against the one-counterpart-linear model’s AICc.

Two sets of AICc values were calculated for both the one-counterpart-linear model and the
multiple-counterpart-non-linear model. The first set of AICc values was calculated based on a
model fit to each of the five datasets. Table 2 shows that the multiple-counterpart-non-linear model
had a lower AICc compared to the one-counterpart-linear model for four of the five datasets. The
second set of AICc values was calculated for each model across all the datasets. This overall AICc
takes into account a model fit and the number of free parameters across a range of datasets [60].
Table 3 shows an overall lower AICc value for the multiple-counterpart-non-linear model com-
pared to the single-counterpart-linear model. Finally, a ΔAICc [58] was calculated for each of the
two overall AICc metrics by taking the difference between each models’ AICc and the minimum
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AICc of the set. Computing the ΔAICc value aids in comparing the AICcs between models. The
lowest AICc and best model will have a ΔAICc of zero. In addition, the larger the ΔAICc between
the two models, the less empirical support there is for a model when compared to another. Ac-
cording to the guidelines of Burnahm and Anderson [58], a ΔAICc larger than 10 suggests little
empirical support for a model compared to another model. Examining the ΔAICc values, we can
conclude that there is little support for the single-counterpart-linear model when compared to the
multiple-counterpart-non-linear model.

In summary, a comparison of the two models based on AICc reveals that, despite the additional
parameters, the multiple-counterpart-non-linear model is better than the single-counterpart-linear
model. The added parameters (trust discounting and trait trust deviation) are particularly useful
to generalize the model beyond Prisoner’s Dilemma and other 2 × 2 strategic interaction games,
particularly to interacting with multiple trustees in sequence (De Melo dataset and cognitive ability
simulation) and dealing with increasingly untrustworthy advice from humans or machines (De
Visser’s [54] dataset).

4 GENERAL DISCUSSION AND CONCLUSION

We presented an updated version of a cognitive model of learned trust that integrates several
seemingly unrelated categories of findings from the literature and thus makes headway toward a
unified theory of learned trust. The model cumulates learning from its history of interactions with
multiple other models (trait trust or trust propensity) and learning from its current interaction
(state trust). The integration between trait and state trust that we propose here has the potential
to unify research directions that are currently somewhat disjointed: the psychological literature
emphasizing trait trust (i.e., trust propensity or general trust) (e.g., Reference [61]) and the eco-
nomics and computation literatures emphasizing state trust (e.g., Reference [62]). It also suggests
computational solutions to the cold-start problem; that is, the inability of a model to generate pre-
dictions before having experienced several rounds of interaction with a counterpart [30].

The model assumption that trait trust is learned (at least in part) from the lifelong history of in-
teraction with multiple counterparts was justified by our empirical finding that trait trust changes
slightly over the course of a study in a specific condition in which evidence of untrustworthiness
is frequently observed ([15]; see Figure 1 above). This finding may be seen as inconsistent with
the literature that describes trust propensity as a relatively stable personality trait [7, 63–66]. To
assess the robustness of our finding, we have replicated this finding in a large study with 627
participants. In addition, careful reading of a larger body of literature suggests that there is no in-
consistency between our findings and the literature on trust propensity. Typically, the stability of
trust propensity as a personality trait is assessed through test-retest reliability, which essentially
is a correlation between trust propensity scores observed at different time points [66]. We also
observed high test-retest reliability for trait trust in our studies.

However, when researchers measure and report changes in means and distributions of trust
propensity scores over time, differences are typically observed. Players’ investments in one-shot
trust games, thought to represent their trait trust, have been found to increase with the age of play-
ers [67] and vary based on geographic region [68]. Twenge, Campell, and Carter [69] examined
longitudinal survey research and found that trait trust has declined in the United States since the
1970s and was moderated by age, birth year, and income. Additionally, differences in trait trust have
been noted between cultures, being on average higher in the West than in the East [70]. Yamagishi
and Yamagishi [71] have proposed that the difference in average trait trust is moderated by par-
ticular cultural practices (e.g., reliance on established relationships) and that these practices lead
to trait trust being learned at different rates across different cultures. More recently, Baer, Matta,
Kim, Welsh, and Garud [72] have shown that trait trust is affected by particular social contexts.
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The difference between our findings and the ones mentioned above is one of timescale: We
observed a change in trait trust during a typical laboratory session (45mins), whereas the changes
mentioned in the literature happened over the course of years. We conjecture that this difference
can be reconciled if we consider the relative frequencies of the different types of evidence (i.e.,
trustworthiness and untrustworthiness). In real-world settings, the ratio between the two different
types of evidence might change very slowly. For example, if the ratio between negative and positive
evidence of trustworthiness is 2/3 over a time span of 10 years, the net effect of this mix of evidence
may be zero (because of the asymmetry between negative and positive evidence; see Figure 2). This
may give the appearance of relative stability of trust propensity over time. In other words, to the
extent that the mix of evidence of trustworthiness and untrustworthiness is relatively constant,
trust propensity appears as a stable trait.

In our studies, we manipulated the ratio between evidence of trustworthiness and untrustwor-
thiness: In the high trustworthiness condition, the ratio was disproportionately in favor of evi-
dence of trustworthiness; whereas in the low trustworthiness condition, the ratio was dispropor-
tionately in favor of evidence of untrustworthiness (see Reference [15] for details). The change in
trait trust was observed only in the low trustworthiness condition (see Figure 1). Arguably, this
condition occurs very rarely in real-world settings, because of cultural practices and institutions
that discourage untrustworthiness. For example, in real-world settings, trustors would discon-
tinue relationships with trustees who produce repeated evidence of untrustworthiness. Our fu-
ture modeling work will focus on better specifying the relationship between the dynamics of trait
trust (trust propensity) in past interactions and the perception of trustworthiness in the current
interaction.

The current version of the model defines the trust learning equation as a power law (and
consequently, the trust accumulator as a leaky accumulator), making it consistent with other more
general learning mechanisms of the cognitive architecture [5]. This gives rise to interesting model
behaviors that match empirical effects observed in human studies such as trust asymmetry, the
higher impact of early trust breaches, and potentially other effects that were not explored here,
such as “surprise” [73]. In addition, the model predicts that trust decays in the absence of evidence
of trustworthiness or untrustworthiness. Although computational models of trust tend to include
some form of trust decay, we do not know of any empirical evidence for this effect in the trust
literature. Our future empirical work will aim to test this novel model prediction. If this prediction
is corroborated by empirical data, it will strengthen the intuitive wisdom that trust can only be
maintained if the flow of information between the two protagonists is uninterrupted. Suggestive
support for this prediction comes from research on virtual, geographically distributed teams:
Jarvenpaa and Leidner [74] found that trust in such conditions was “swift” but very fragile; regular
and timely communication feedback was critical for building trust and commitment in distributed
teams.

Trust theorists seem to agree that trust is based on “good reasons” [7, 63, 75], but all the good
reasons seem to belong to the categories that were referred to here as perceived evidence of trust-
worthiness (PET in Equation (2)) and trait trust (TT in Equation (4), trustor’s propensity in Mayer
et al. [7]). Our model suggests that perceived trust necessity and the trustor’s cognitive ability
could also be considered among the good reasons (or antecedents) of trust. Figure 8 shows a mod-
ified and simplified version of Mayer et al.’s [7] model of trust. The factors that pertain to the
trustor are presented separately from those that pertain to the trustee to show that Mayer’s model
emphasizes factors pertaining to the trustee; that is, components of trustworthiness. This empha-
sis on trustworthiness as the most important antecedent of trust seems to permeate the entire trust
literature [26]. Our work suggests that factors pertaining to the trustor (i.e., perceived trust neces-
sity and cognitive ability, colored in red in Figure 8) are also important. They may even be critical
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Fig. 8. Antecedents of trust.

in certain situations. For example, a correct assessment of trust necessity is critical to overcome
cases of escalating mutual distrust or to prevent hasty disposal of imperfect but useful technology,
and the ability of the trustor to detect the actual trustworthiness behind ambiguous or misleading
cues can be essential for appropriate trust calibration.

Although there are many computational models that deal with trust and related phenomena
(e.g., References [30, 76–78]), our attempt presented here is unique because it tries to integrate
trust in a cognitive architecture and a unified theory of cognition. Given that trust has an impor-
tant cognitive component [25], it would make sense to try to make use of the established theory
on cognition and its computational instantiation. We developed a computational model of trust
that used the ACT-R cognitive architecture’s established cognitive mechanisms such as instance-
based learning to develop a dynamic representation of the counterpart’s behavior and procedural
learning to develop best-response strategies.

However, using the existing ACT-R mechanisms proved to be insufficient to account for the
complex dynamics of the strategic interaction between counterparts. We added a new trust learn-
ing mechanism to the model that specifies how the counterparts learn to trust each other based on
observed evidence of trustworthiness. This trust learning mechanism interacts with the existing
ACT-R learning mechanisms by influencing what strategies are learned and when strategy shifts
occur. We added the trust learning mechanism to the model as a proof of concept, but suggested
that a similar (perhaps more general) mechanism should eventually (after thorough validation) be
added to the architecture. Even though our work presented here is somewhat limited in scope, it
can be characterized as a step toward a general architectural mechanism that specifies how agents
learn about both the task at hand and other agents with which they interact in complex cooperative
or competitive environments.

We also made some headway toward integrating multiple task paradigms. The model focus was
initially on 2 × 2 strategic games (i.e., “Prisoner’s Dilemma” type of games). However, we hope
that the new trust learning mechanism will apply more widely to interactive decision-making. We
have shown that the trust mechanism applies to another interactive decision-making phenomenon:
advice taking in a sequence-learning task [54]. The core idea that we hope will generalize to other
interactive decision-making situations is that players form beliefs about their counterparts, and
these beliefs guide strategy choice and strategy shifts.

A cautionary word is necessary here to avoid unrealistic expectations: We are still far from a
truly unified, all-encompassing theory of learned trust. However, following Newell’s [3] advice,
we believe it is important to work toward developing unified theories. As the term “toward” in the
title of this article suggests, we are outlining here a desideratum rather than an accomplishment.
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To remain general, our model had to be left largely underspecified. The trust learning mechanism
we proposed here did not deal with the knowledge level. We only specified how trust could be
learned, but the actual knowledge that was learned came from perceptual input and interaction
with other agents. For example, we only suggested that the perceived evidence of trustworthiness
or untrustworthiness accumulated in a certain way. The evidence of trustworthiness varied in the
different instantiations of our model. For example, in the PD and CG games, the payoff matrix
suggests what may constitute evidence of trustworthiness (or untrustworthiness) and its magni-
tude. In De Melo’s task, facial expressions were translated into evidence of trustworthiness. In De
Visser’s task, it was the quality of the advice that was considered evidence of trustworthiness. All
this is information that is perceived in the environment and becomes knowledge for the model. As
for the values (magnitudes) of this evidence, they were estimated in the process of model fitting;
that is, they were considered to be free parameters for the model. Translating skill and knowledge
phenomena into free parameters was done to keep the model simple and focus on general princi-
ples and mechanisms. We also proposed a way to “interpret” the evidence about a trustee relative
to the experience the trustor had with a previous trustee. To work in a different domain, the model
will need to incorporate specifications of what counts as evidence of (un)trustworthiness, how the
evidence is perceived and decoded, and so on. For example, the extent to which one might decrease
their trust may be different when they encounter defection in Prisoner’s Dilemma as compared to
when they receive bad advice in a sequence-learning task.

This work is relevant to the area of human-autonomy teaming. The science and practice of
human-machine interaction have departed from the traditional function allocation methods (who-
does-what or men-are-better-at/machines-are-better-at; Fitts [79]) and is currently moving toward
a human-autonomy teaming approach in which the focus is on how machines can become effective
team players [80] and how humans and technology co-evolve [28]. Empirical and theoretical work
on interpersonal and human-machine trust can inform design and evaluation of human-autonomy
teaming. For example, De Visser, Pak, and Shaw [81] argue for developing autonomous systems
that possess trust repair capabilities. The work presented here suggests that trust is more resilient
(i.e., resistant to breaches) when the trustor perceives the relationship with the trustee as a strategic
relationship (see Sections 2.1 and 4.6) and engages in costly and risky trust repair strategies (see
Section 2 for a description of how models sometimes manage to escape the self-reinforcing cycle
of mutual defection; see also Juvina et al. [13] for more details).

In conclusion, this article reports on the incremental progress we have made from a post hoc
model of strategic interaction to a more general model that is able to make a priori predictions and
account for seemingly unrelated results from the literature on interpersonal and human-machine
interactions.
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APPENDIX A

Fig. F1. Diagram of the cognitive model that explains learning in the Prisoner’s Dilemma (PD) and Chicken

Game (CG) and transfer of learning between the two games in both directions (PD-CG and CG-PD). Two

models play simultaneously. Each model tries to predict the counterpart’s move using instance-based

learning (IBL) and sequence-learning (SL). Once they predict their counterpart’s move, they make their

own move based on what they have learned through utility learning (UL) to be the best move in a given

context. Then players observe each other’s moves and use this information to inform future predictions

and infer the counterpart’s trustworthiness and the necessity to develop (invest in) trust. Trustworthiness

and trust necessity determinewhat reward function is used for learning a strategy to best respond to the

counterpart’s predicted move.
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Fig. F2. Fit of the one-counterpart-linear model (red dots) to Lount et al. (2008) data (black dots). Error bars

represent 95% confidence intervals.

Fig. F3. Fit of the one-counterpart-linear model (right panel) to De Melo et al. (2011) data (left panel). Error

bars represent 95% confidence intervals.
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Fig. F4. The least mean square estimates (+/− standard error) for compliance with the three human (black

line), avatar (red line), and computer (blue line) agents for both the one-counterpart-linear model (left-side

plot) and human data (right-side plot).

Table T1. Payoff Matrices of Prisoner’s Dilemma (PD)

and Chicken Game (CG)

PD A B CG A B
A −1,−1 10,−10 A −10,−10 10,−1
B −10,10 1,1 B −1,10 1,1

Table T2. Names, Acronyms, and Descriptions for the Parameters of the

Multiple-counterparts-non-linear Model

Parameter Acronym Description
Trait Trust TT Trust propensity or dispositional trust
State Trust ST The trust that develops during a particular interaction

Actual evidence of
trustworthiness

AET Actions, statements, or other indicators (e.g., facial
expressions) of trustworthiness

Perceived evidence of
trustworthiness

PET The trustor’s representation of the AET

Perceived evidence of
trust necessity

PETN The trustor’s representation of the indicators of situations
that require trust development

Trait trust deviation TTD Difference between the trait trust value at the end of the
current interaction and the trait trust value at the

beginning of this interaction
Cognitive ability e Accuracy (error) in assessing trustworthiness signals

Trust decay a Power exponent that determines how fast state trust
decays over time (a < 1)

Perception bias b A parameter that scales how much PET is adjusted as a
function of the trustor’s previous experience with another

trustee
State trust divider k A parameter that scales down the value of state trust

before it accumulates into trait trust
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Table T3. The List of Parameters for the Trust and Trust-invest Accumulators Based on the Behavioral

Outcomes that Occurred in De Melo et al.’s (2010) Study, that is, Whether Both Agents Cooperated

(CC), Both Defected (DD), the Model Cooperated and the Agent Defected (CD), the Model Defected and

the Agent Cooperated (DC), and the Emotion Displayed by the Confederate Agent

Behavioral Effects on Trust Emotional Effects on Trust
Trust Trust Invest Trust Trust Invest

Outcome Emotion Accumulator Accumulator Accumulator Accumulator
CC Joy 6 NA 1 NA
CC Neutral 6 NA −3 NA
CD Shame −7 −1 1 NA
CD Joy −7 −1 −6 −2
DC Anger 9 NA −6 .5
DC Sadness 9 NA −4 NA
DD Sadness −1 .18 −3 .32
DD Sadness/Neutral −1 .18 −3 .32

For example, if the outcome was mutual cooperation (CC) and the counterpart expressed joy, an increment of 1 will be

added to the trust accumulator; if the outcome was unilateral cooperation (CD) and the counterpart expressed joy, a

decrement of –6 will be added to the trust accumulator.

Table T4. The List of Initial Trait Trust (Trust Propensity) and Perceived Evidence

of Trustworthiness (PET) Parameter Values for the Trust and Trust Invest Accumulators for

De Visser et al.’s (2016) Study for Both the ACT-R Model (Model) and the Different Decision

Agents (Human, Avatar, and Computer)

Agent Initial Trust Initial Invest Correct Incorrect Invest Uninvest

Human 5 5 .75 −3 1.5 0
Avatar 6 5 .75 −3 1.18 0
Computer 7.5 5 .75 −3 1.2 0
Model 0 5 1 0 .18 0
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